| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192 | import osfrom collections.abc import Generatorimport pytestfrom core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDeltafrom core.model_runtime.entities.message_entities import AssistantPromptMessage, SystemPromptMessage, UserPromptMessagefrom core.model_runtime.errors.validate import CredentialsValidateFailedErrorfrom core.model_runtime.model_providers.anthropic.llm.llm import AnthropicLargeLanguageModelfrom tests.integration_tests.model_runtime.__mock.anthropic import setup_anthropic_mock@pytest.mark.parametrize("setup_anthropic_mock", [["none"]], indirect=True)def test_validate_credentials(setup_anthropic_mock):    model = AnthropicLargeLanguageModel()    with pytest.raises(CredentialsValidateFailedError):        model.validate_credentials(model="claude-instant-1.2", credentials={"anthropic_api_key": "invalid_key"})    model.validate_credentials(        model="claude-instant-1.2", credentials={"anthropic_api_key": os.environ.get("ANTHROPIC_API_KEY")}    )@pytest.mark.parametrize("setup_anthropic_mock", [["none"]], indirect=True)def test_invoke_model(setup_anthropic_mock):    model = AnthropicLargeLanguageModel()    response = model.invoke(        model="claude-instant-1.2",        credentials={            "anthropic_api_key": os.environ.get("ANTHROPIC_API_KEY"),            "anthropic_api_url": os.environ.get("ANTHROPIC_API_URL"),        },        prompt_messages=[            SystemPromptMessage(                content="You are a helpful AI assistant.",            ),            UserPromptMessage(content="Hello World!"),        ],        model_parameters={"temperature": 0.0, "top_p": 1.0, "max_tokens": 10},        stop=["How"],        stream=False,        user="abc-123",    )    assert isinstance(response, LLMResult)    assert len(response.message.content) > 0@pytest.mark.parametrize("setup_anthropic_mock", [["none"]], indirect=True)def test_invoke_stream_model(setup_anthropic_mock):    model = AnthropicLargeLanguageModel()    response = model.invoke(        model="claude-instant-1.2",        credentials={"anthropic_api_key": os.environ.get("ANTHROPIC_API_KEY")},        prompt_messages=[            SystemPromptMessage(                content="You are a helpful AI assistant.",            ),            UserPromptMessage(content="Hello World!"),        ],        model_parameters={"temperature": 0.0, "max_tokens": 100},        stream=True,        user="abc-123",    )    assert isinstance(response, Generator)    for chunk in response:        assert isinstance(chunk, LLMResultChunk)        assert isinstance(chunk.delta, LLMResultChunkDelta)        assert isinstance(chunk.delta.message, AssistantPromptMessage)        assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else Truedef test_get_num_tokens():    model = AnthropicLargeLanguageModel()    num_tokens = model.get_num_tokens(        model="claude-instant-1.2",        credentials={"anthropic_api_key": os.environ.get("ANTHROPIC_API_KEY")},        prompt_messages=[            SystemPromptMessage(                content="You are a helpful AI assistant.",            ),            UserPromptMessage(content="Hello World!"),        ],    )    assert num_tokens == 18
 |