| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306 | import jsonfrom collections.abc import Mappingfrom copy import deepcopyfrom datetime import datetime, timezonefrom mimetypes import guess_typefrom typing import Any, Optional, Unionfrom yarl import URLfrom core.app.entities.app_invoke_entities import InvokeFromfrom core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandlerfrom core.callback_handler.workflow_tool_callback_handler import DifyWorkflowCallbackHandlerfrom core.file.file_obj import FileTransferMethodfrom core.ops.ops_trace_manager import TraceQueueManagerfrom core.tools.entities.tool_entities import ToolInvokeMessage, ToolInvokeMessageBinary, ToolInvokeMeta, ToolParameterfrom core.tools.errors import (    ToolEngineInvokeError,    ToolInvokeError,    ToolNotFoundError,    ToolNotSupportedError,    ToolParameterValidationError,    ToolProviderCredentialValidationError,    ToolProviderNotFoundError,)from core.tools.tool.tool import Toolfrom core.tools.tool.workflow_tool import WorkflowToolfrom core.tools.utils.message_transformer import ToolFileMessageTransformerfrom extensions.ext_database import dbfrom models.model import Message, MessageFileclass ToolEngine:    """    Tool runtime engine take care of the tool executions.    """    @staticmethod    def agent_invoke(        tool: Tool,        tool_parameters: Union[str, dict],        user_id: str,        tenant_id: str,        message: Message,        invoke_from: InvokeFrom,        agent_tool_callback: DifyAgentCallbackHandler,        trace_manager: Optional[TraceQueueManager] = None,    ) -> tuple[str, list[tuple[MessageFile, bool]], ToolInvokeMeta]:        """        Agent invokes the tool with the given arguments.        """        # check if arguments is a string        if isinstance(tool_parameters, str):            # check if this tool has only one parameter            parameters = [                parameter                for parameter in tool.get_runtime_parameters() or []                if parameter.form == ToolParameter.ToolParameterForm.LLM            ]            if parameters and len(parameters) == 1:                tool_parameters = {parameters[0].name: tool_parameters}            else:                raise ValueError(f"tool_parameters should be a dict, but got a string: {tool_parameters}")        # invoke the tool        try:            # hit the callback handler            agent_tool_callback.on_tool_start(tool_name=tool.identity.name, tool_inputs=tool_parameters)            meta, response = ToolEngine._invoke(tool, tool_parameters, user_id)            response = ToolFileMessageTransformer.transform_tool_invoke_messages(                messages=response, user_id=user_id, tenant_id=tenant_id, conversation_id=message.conversation_id            )            # extract binary data from tool invoke message            binary_files = ToolEngine._extract_tool_response_binary(response)            # create message file            message_files = ToolEngine._create_message_files(                tool_messages=binary_files, agent_message=message, invoke_from=invoke_from, user_id=user_id            )            plain_text = ToolEngine._convert_tool_response_to_str(response)            # hit the callback handler            agent_tool_callback.on_tool_end(                tool_name=tool.identity.name,                tool_inputs=tool_parameters,                tool_outputs=plain_text,                message_id=message.id,                trace_manager=trace_manager,            )            # transform tool invoke message to get LLM friendly message            return plain_text, message_files, meta        except ToolProviderCredentialValidationError as e:            error_response = "Please check your tool provider credentials"            agent_tool_callback.on_tool_error(e)        except (ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError) as e:            error_response = f"there is not a tool named {tool.identity.name}"            agent_tool_callback.on_tool_error(e)        except ToolParameterValidationError as e:            error_response = f"tool parameters validation error: {e}, please check your tool parameters"            agent_tool_callback.on_tool_error(e)        except ToolInvokeError as e:            error_response = f"tool invoke error: {e}"            agent_tool_callback.on_tool_error(e)        except ToolEngineInvokeError as e:            meta = e.args[0]            error_response = f"tool invoke error: {meta.error}"            agent_tool_callback.on_tool_error(e)            return error_response, [], meta        except Exception as e:            error_response = f"unknown error: {e}"            agent_tool_callback.on_tool_error(e)        return error_response, [], ToolInvokeMeta.error_instance(error_response)    @staticmethod    def workflow_invoke(        tool: Tool,        tool_parameters: Mapping[str, Any],        user_id: str,        workflow_tool_callback: DifyWorkflowCallbackHandler,        workflow_call_depth: int,        thread_pool_id: Optional[str] = None,    ) -> list[ToolInvokeMessage]:        """        Workflow invokes the tool with the given arguments.        """        try:            # hit the callback handler            workflow_tool_callback.on_tool_start(tool_name=tool.identity.name, tool_inputs=tool_parameters)            if isinstance(tool, WorkflowTool):                tool.workflow_call_depth = workflow_call_depth + 1                tool.thread_pool_id = thread_pool_id            if tool.runtime and tool.runtime.runtime_parameters:                tool_parameters = {**tool.runtime.runtime_parameters, **tool_parameters}            response = tool.invoke(user_id=user_id, tool_parameters=tool_parameters)            # hit the callback handler            workflow_tool_callback.on_tool_end(                tool_name=tool.identity.name,                tool_inputs=tool_parameters,                tool_outputs=response,            )            return response        except Exception as e:            workflow_tool_callback.on_tool_error(e)            raise e    @staticmethod    def _invoke(tool: Tool, tool_parameters: dict, user_id: str) -> tuple[ToolInvokeMeta, list[ToolInvokeMessage]]:        """        Invoke the tool with the given arguments.        """        started_at = datetime.now(timezone.utc)        meta = ToolInvokeMeta(            time_cost=0.0,            error=None,            tool_config={                "tool_name": tool.identity.name,                "tool_provider": tool.identity.provider,                "tool_provider_type": tool.tool_provider_type().value,                "tool_parameters": deepcopy(tool.runtime.runtime_parameters),                "tool_icon": tool.identity.icon,            },        )        try:            response = tool.invoke(user_id, tool_parameters)        except Exception as e:            meta.error = str(e)            raise ToolEngineInvokeError(meta)        finally:            ended_at = datetime.now(timezone.utc)            meta.time_cost = (ended_at - started_at).total_seconds()        return meta, response    @staticmethod    def _convert_tool_response_to_str(tool_response: list[ToolInvokeMessage]) -> str:        """        Handle tool response        """        result = ""        for response in tool_response:            if response.type == ToolInvokeMessage.MessageType.TEXT:                result += response.message            elif response.type == ToolInvokeMessage.MessageType.LINK:                result += f"result link: {response.message}. please tell user to check it."            elif response.type in {ToolInvokeMessage.MessageType.IMAGE_LINK, ToolInvokeMessage.MessageType.IMAGE}:                result += (                    "image has been created and sent to user already, you do not need to create it,"                    " just tell the user to check it now."                )            elif response.type == ToolInvokeMessage.MessageType.JSON:                result += f"tool response: {json.dumps(response.message, ensure_ascii=False)}."            else:                result += f"tool response: {response.message}."        return result    @staticmethod    def _extract_tool_response_binary(tool_response: list[ToolInvokeMessage]) -> list[ToolInvokeMessageBinary]:        """        Extract tool response binary        """        result = []        for response in tool_response:            if response.type in {ToolInvokeMessage.MessageType.IMAGE_LINK, ToolInvokeMessage.MessageType.IMAGE}:                mimetype = None                if response.meta.get("mime_type"):                    mimetype = response.meta.get("mime_type")                else:                    try:                        url = URL(response.message)                        extension = url.suffix                        guess_type_result, _ = guess_type(f"a{extension}")                        if guess_type_result:                            mimetype = guess_type_result                    except Exception:                        pass                if not mimetype:                    mimetype = "image/jpeg"                result.append(                    ToolInvokeMessageBinary(                        mimetype=response.meta.get("mime_type", "image/jpeg"),                        url=response.message,                        save_as=response.save_as,                    )                )            elif response.type == ToolInvokeMessage.MessageType.BLOB:                result.append(                    ToolInvokeMessageBinary(                        mimetype=response.meta.get("mime_type", "octet/stream"),                        url=response.message,                        save_as=response.save_as,                    )                )            elif response.type == ToolInvokeMessage.MessageType.LINK:                # check if there is a mime type in meta                if response.meta and "mime_type" in response.meta:                    result.append(                        ToolInvokeMessageBinary(                            mimetype=response.meta.get("mime_type", "octet/stream")                            if response.meta                            else "octet/stream",                            url=response.message,                            save_as=response.save_as,                        )                    )        return result    @staticmethod    def _create_message_files(        tool_messages: list[ToolInvokeMessageBinary], agent_message: Message, invoke_from: InvokeFrom, user_id: str    ) -> list[tuple[Any, str]]:        """        Create message file        :param messages: messages        :return: message files, should save as variable        """        result = []        for message in tool_messages:            file_type = "bin"            if "image" in message.mimetype:                file_type = "image"            elif "video" in message.mimetype:                file_type = "video"            elif "audio" in message.mimetype:                file_type = "audio"            elif "text" in message.mimetype:                file_type = "text"            elif "pdf" in message.mimetype:                file_type = "pdf"            elif "zip" in message.mimetype:                file_type = "archive"            # ...            message_file = MessageFile(                message_id=agent_message.id,                type=file_type,                transfer_method=FileTransferMethod.TOOL_FILE.value,                belongs_to="assistant",                url=message.url,                upload_file_id=None,                created_by_role=("account" if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end_user"),                created_by=user_id,            )            db.session.add(message_file)            db.session.commit()            db.session.refresh(message_file)            result.append((message_file.id, message.save_as))        db.session.close()        return result
 |