crazywoola 792f908afb Revert "feat:Azure gpt4o mini" (#6870) 1 سال پیش
..
configs 8dd68e2034 fix(api/core/moderation/output_moderation.py): Fix config call. (#6769) 1 سال پیش
constants 5e6fc58db3 Feat/environment variables in workflow (#6515) 1 سال پیش
contexts 5e6fc58db3 Feat/environment variables in workflow (#6515) 1 سال پیش
controllers af76381b98 fix notion internal setting (#6836) 1 سال پیش
core 792f908afb Revert "feat:Azure gpt4o mini" (#6870) 1 سال پیش
docker 8eb0d0fddd feat: support Celery auto-scale (#6249) 1 سال پیش
events d320d1468d Feat/delete file when clean document (#5882) 1 سال پیش
extensions feb4576ee7 chore: update SQLAlchemy configuration with custom naming convention (#6854) 1 سال پیش
fields 8157fccf6d delete weight_type (#6865) 1 سال پیش
libs a98284b1ef refactor(api): Switch to `dify_config` (#6750) 1 سال پیش
migrations feb4576ee7 chore: update SQLAlchemy configuration with custom naming convention (#6854) 1 سال پیش
models e23461c837 Fix/6615 40 varchar limit on DatasetCollectionBinding and Embedding model name (#6723) 1 سال پیش
schedule 5e6fc58db3 Feat/environment variables in workflow (#6515) 1 سال پیش
services 05141ede16 chore: optimize asynchronous deletion performance of app related data (#6634) 1 سال پیش
tasks 0625db0bf5 chore: optimize asynchronous workflow deletion performance of app related data (#6639) 1 سال پیش
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) 1 سال پیش
tests 3e18d32ce5 add deepseek-coder-v2 in siliconflow (#6149) 1 سال پیش
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 1 سال پیش
.env.example ecb9c311b5 chore: make prompt generator max tokens configurable (#6693) 1 سال پیش
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) 1 سال پیش
README.md fb5e3662d5 Chores: add missing profile for middleware docker compose cmd and fix ssrf-proxy doc link (#6372) 1 سال پیش
app.py 545d3c5a93 chore: Add processId field for metrics of threads/db-pool-stat/health (#6797) 1 سال پیش
commands.py a98284b1ef refactor(api): Switch to `dify_config` (#6750) 1 سال پیش
poetry.lock f6e8e120a1 support xinference tts (#6746) 1 سال پیش
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 1 سال پیش
pyproject.toml f6e8e120a1 support xinference tts (#6746) 1 سال پیش

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
    
    secret_key=$(openssl rand -base64 42)
    sed -i '' "/^SECRET_KEY=/c\\
    SECRET_KEY=${secret_key}" .env
    
  3. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies

    poetry env use 3.10
    poetry install
    

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend

    poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
    
  2. Start Dify web service.

  3. Setup your application by visiting http://localhost:3000...

  4. If you need to debug local async processing, please start the worker service.

    poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion
    

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    poetry install --with dev
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    cd ../
    poetry run -C api bash dev/pytest/pytest_all_tests.sh