base_agent_runner.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515
  1. import json
  2. import logging
  3. import uuid
  4. from datetime import datetime, timezone
  5. from typing import Optional, Union, cast
  6. from core.agent.entities import AgentEntity, AgentToolEntity
  7. from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
  8. from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
  9. from core.app.apps.base_app_queue_manager import AppQueueManager
  10. from core.app.apps.base_app_runner import AppRunner
  11. from core.app.entities.app_invoke_entities import (
  12. AgentChatAppGenerateEntity,
  13. ModelConfigWithCredentialsEntity,
  14. )
  15. from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
  16. from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
  17. from core.file.message_file_parser import MessageFileParser
  18. from core.memory.token_buffer_memory import TokenBufferMemory
  19. from core.model_manager import ModelInstance
  20. from core.model_runtime.entities.llm_entities import LLMUsage
  21. from core.model_runtime.entities.message_entities import (
  22. AssistantPromptMessage,
  23. PromptMessage,
  24. PromptMessageTool,
  25. SystemPromptMessage,
  26. TextPromptMessageContent,
  27. ToolPromptMessage,
  28. UserPromptMessage,
  29. )
  30. from core.model_runtime.entities.model_entities import ModelFeature
  31. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  32. from core.model_runtime.utils.encoders import jsonable_encoder
  33. from core.tools.entities.tool_entities import (
  34. ToolParameter,
  35. ToolRuntimeVariablePool,
  36. )
  37. from core.tools.tool.dataset_retriever_tool import DatasetRetrieverTool
  38. from core.tools.tool.tool import Tool
  39. from core.tools.tool_manager import ToolManager
  40. from core.tools.utils.tool_parameter_converter import ToolParameterConverter
  41. from extensions.ext_database import db
  42. from models.model import Conversation, Message, MessageAgentThought
  43. from models.tools import ToolConversationVariables
  44. logger = logging.getLogger(__name__)
  45. class BaseAgentRunner(AppRunner):
  46. def __init__(self, tenant_id: str,
  47. application_generate_entity: AgentChatAppGenerateEntity,
  48. conversation: Conversation,
  49. app_config: AgentChatAppConfig,
  50. model_config: ModelConfigWithCredentialsEntity,
  51. config: AgentEntity,
  52. queue_manager: AppQueueManager,
  53. message: Message,
  54. user_id: str,
  55. memory: Optional[TokenBufferMemory] = None,
  56. prompt_messages: Optional[list[PromptMessage]] = None,
  57. variables_pool: Optional[ToolRuntimeVariablePool] = None,
  58. db_variables: Optional[ToolConversationVariables] = None,
  59. model_instance: ModelInstance = None
  60. ) -> None:
  61. """
  62. Agent runner
  63. :param tenant_id: tenant id
  64. :param application_generate_entity: application generate entity
  65. :param conversation: conversation
  66. :param app_config: app generate entity
  67. :param model_config: model config
  68. :param config: dataset config
  69. :param queue_manager: queue manager
  70. :param message: message
  71. :param user_id: user id
  72. :param memory: memory
  73. :param prompt_messages: prompt messages
  74. :param variables_pool: variables pool
  75. :param db_variables: db variables
  76. :param model_instance: model instance
  77. """
  78. self.tenant_id = tenant_id
  79. self.application_generate_entity = application_generate_entity
  80. self.conversation = conversation
  81. self.app_config = app_config
  82. self.model_config = model_config
  83. self.config = config
  84. self.queue_manager = queue_manager
  85. self.message = message
  86. self.user_id = user_id
  87. self.memory = memory
  88. self.history_prompt_messages = self.organize_agent_history(
  89. prompt_messages=prompt_messages or []
  90. )
  91. self.variables_pool = variables_pool
  92. self.db_variables_pool = db_variables
  93. self.model_instance = model_instance
  94. # init callback
  95. self.agent_callback = DifyAgentCallbackHandler()
  96. # init dataset tools
  97. hit_callback = DatasetIndexToolCallbackHandler(
  98. queue_manager=queue_manager,
  99. app_id=self.app_config.app_id,
  100. message_id=message.id,
  101. user_id=user_id,
  102. invoke_from=self.application_generate_entity.invoke_from,
  103. )
  104. self.dataset_tools = DatasetRetrieverTool.get_dataset_tools(
  105. tenant_id=tenant_id,
  106. dataset_ids=app_config.dataset.dataset_ids if app_config.dataset else [],
  107. retrieve_config=app_config.dataset.retrieve_config if app_config.dataset else None,
  108. return_resource=app_config.additional_features.show_retrieve_source,
  109. invoke_from=application_generate_entity.invoke_from,
  110. hit_callback=hit_callback
  111. )
  112. # get how many agent thoughts have been created
  113. self.agent_thought_count = db.session.query(MessageAgentThought).filter(
  114. MessageAgentThought.message_id == self.message.id,
  115. ).count()
  116. db.session.close()
  117. # check if model supports stream tool call
  118. llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
  119. model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
  120. if model_schema and ModelFeature.STREAM_TOOL_CALL in (model_schema.features or []):
  121. self.stream_tool_call = True
  122. else:
  123. self.stream_tool_call = False
  124. # check if model supports vision
  125. if model_schema and ModelFeature.VISION in (model_schema.features or []):
  126. self.files = application_generate_entity.files
  127. else:
  128. self.files = []
  129. self.query = None
  130. self._current_thoughts: list[PromptMessage] = []
  131. def _repack_app_generate_entity(self, app_generate_entity: AgentChatAppGenerateEntity) \
  132. -> AgentChatAppGenerateEntity:
  133. """
  134. Repack app generate entity
  135. """
  136. if app_generate_entity.app_config.prompt_template.simple_prompt_template is None:
  137. app_generate_entity.app_config.prompt_template.simple_prompt_template = ''
  138. return app_generate_entity
  139. def _convert_tool_to_prompt_message_tool(self, tool: AgentToolEntity) -> tuple[PromptMessageTool, Tool]:
  140. """
  141. convert tool to prompt message tool
  142. """
  143. tool_entity = ToolManager.get_agent_tool_runtime(
  144. tenant_id=self.tenant_id,
  145. app_id=self.app_config.app_id,
  146. agent_tool=tool,
  147. invoke_from=self.application_generate_entity.invoke_from
  148. )
  149. tool_entity.load_variables(self.variables_pool)
  150. message_tool = PromptMessageTool(
  151. name=tool.tool_name,
  152. description=tool_entity.description.llm,
  153. parameters={
  154. "type": "object",
  155. "properties": {},
  156. "required": [],
  157. }
  158. )
  159. parameters = tool_entity.get_all_runtime_parameters()
  160. for parameter in parameters:
  161. if parameter.form != ToolParameter.ToolParameterForm.LLM:
  162. continue
  163. parameter_type = ToolParameterConverter.get_parameter_type(parameter.type)
  164. enum = []
  165. if parameter.type == ToolParameter.ToolParameterType.SELECT:
  166. enum = [option.value for option in parameter.options]
  167. message_tool.parameters['properties'][parameter.name] = {
  168. "type": parameter_type,
  169. "description": parameter.llm_description or '',
  170. }
  171. if len(enum) > 0:
  172. message_tool.parameters['properties'][parameter.name]['enum'] = enum
  173. if parameter.required:
  174. message_tool.parameters['required'].append(parameter.name)
  175. return message_tool, tool_entity
  176. def _convert_dataset_retriever_tool_to_prompt_message_tool(self, tool: DatasetRetrieverTool) -> PromptMessageTool:
  177. """
  178. convert dataset retriever tool to prompt message tool
  179. """
  180. prompt_tool = PromptMessageTool(
  181. name=tool.identity.name,
  182. description=tool.description.llm,
  183. parameters={
  184. "type": "object",
  185. "properties": {},
  186. "required": [],
  187. }
  188. )
  189. for parameter in tool.get_runtime_parameters():
  190. parameter_type = 'string'
  191. prompt_tool.parameters['properties'][parameter.name] = {
  192. "type": parameter_type,
  193. "description": parameter.llm_description or '',
  194. }
  195. if parameter.required:
  196. if parameter.name not in prompt_tool.parameters['required']:
  197. prompt_tool.parameters['required'].append(parameter.name)
  198. return prompt_tool
  199. def _init_prompt_tools(self) -> tuple[dict[str, Tool], list[PromptMessageTool]]:
  200. """
  201. Init tools
  202. """
  203. tool_instances = {}
  204. prompt_messages_tools = []
  205. for tool in self.app_config.agent.tools if self.app_config.agent else []:
  206. try:
  207. prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
  208. except Exception:
  209. # api tool may be deleted
  210. continue
  211. # save tool entity
  212. tool_instances[tool.tool_name] = tool_entity
  213. # save prompt tool
  214. prompt_messages_tools.append(prompt_tool)
  215. # convert dataset tools into ModelRuntime Tool format
  216. for dataset_tool in self.dataset_tools:
  217. prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
  218. # save prompt tool
  219. prompt_messages_tools.append(prompt_tool)
  220. # save tool entity
  221. tool_instances[dataset_tool.identity.name] = dataset_tool
  222. return tool_instances, prompt_messages_tools
  223. def update_prompt_message_tool(self, tool: Tool, prompt_tool: PromptMessageTool) -> PromptMessageTool:
  224. """
  225. update prompt message tool
  226. """
  227. # try to get tool runtime parameters
  228. tool_runtime_parameters = tool.get_runtime_parameters() or []
  229. for parameter in tool_runtime_parameters:
  230. if parameter.form != ToolParameter.ToolParameterForm.LLM:
  231. continue
  232. parameter_type = ToolParameterConverter.get_parameter_type(parameter.type)
  233. enum = []
  234. if parameter.type == ToolParameter.ToolParameterType.SELECT:
  235. enum = [option.value for option in parameter.options]
  236. prompt_tool.parameters['properties'][parameter.name] = {
  237. "type": parameter_type,
  238. "description": parameter.llm_description or '',
  239. }
  240. if len(enum) > 0:
  241. prompt_tool.parameters['properties'][parameter.name]['enum'] = enum
  242. if parameter.required:
  243. if parameter.name not in prompt_tool.parameters['required']:
  244. prompt_tool.parameters['required'].append(parameter.name)
  245. return prompt_tool
  246. def create_agent_thought(self, message_id: str, message: str,
  247. tool_name: str, tool_input: str, messages_ids: list[str]
  248. ) -> MessageAgentThought:
  249. """
  250. Create agent thought
  251. """
  252. thought = MessageAgentThought(
  253. message_id=message_id,
  254. message_chain_id=None,
  255. thought='',
  256. tool=tool_name,
  257. tool_labels_str='{}',
  258. tool_meta_str='{}',
  259. tool_input=tool_input,
  260. message=message,
  261. message_token=0,
  262. message_unit_price=0,
  263. message_price_unit=0,
  264. message_files=json.dumps(messages_ids) if messages_ids else '',
  265. answer='',
  266. observation='',
  267. answer_token=0,
  268. answer_unit_price=0,
  269. answer_price_unit=0,
  270. tokens=0,
  271. total_price=0,
  272. position=self.agent_thought_count + 1,
  273. currency='USD',
  274. latency=0,
  275. created_by_role='account',
  276. created_by=self.user_id,
  277. )
  278. db.session.add(thought)
  279. db.session.commit()
  280. db.session.refresh(thought)
  281. db.session.close()
  282. self.agent_thought_count += 1
  283. return thought
  284. def save_agent_thought(self,
  285. agent_thought: MessageAgentThought,
  286. tool_name: str,
  287. tool_input: Union[str, dict],
  288. thought: str,
  289. observation: Union[str, dict],
  290. tool_invoke_meta: Union[str, dict],
  291. answer: str,
  292. messages_ids: list[str],
  293. llm_usage: LLMUsage = None) -> MessageAgentThought:
  294. """
  295. Save agent thought
  296. """
  297. agent_thought = db.session.query(MessageAgentThought).filter(
  298. MessageAgentThought.id == agent_thought.id
  299. ).first()
  300. if thought is not None:
  301. agent_thought.thought = thought
  302. if tool_name is not None:
  303. agent_thought.tool = tool_name
  304. if tool_input is not None:
  305. if isinstance(tool_input, dict):
  306. try:
  307. tool_input = json.dumps(tool_input, ensure_ascii=False)
  308. except Exception as e:
  309. tool_input = json.dumps(tool_input)
  310. agent_thought.tool_input = tool_input
  311. if observation is not None:
  312. if isinstance(observation, dict):
  313. try:
  314. observation = json.dumps(observation, ensure_ascii=False)
  315. except Exception as e:
  316. observation = json.dumps(observation)
  317. agent_thought.observation = observation
  318. if answer is not None:
  319. agent_thought.answer = answer
  320. if messages_ids is not None and len(messages_ids) > 0:
  321. agent_thought.message_files = json.dumps(messages_ids)
  322. if llm_usage:
  323. agent_thought.message_token = llm_usage.prompt_tokens
  324. agent_thought.message_price_unit = llm_usage.prompt_price_unit
  325. agent_thought.message_unit_price = llm_usage.prompt_unit_price
  326. agent_thought.answer_token = llm_usage.completion_tokens
  327. agent_thought.answer_price_unit = llm_usage.completion_price_unit
  328. agent_thought.answer_unit_price = llm_usage.completion_unit_price
  329. agent_thought.tokens = llm_usage.total_tokens
  330. agent_thought.total_price = llm_usage.total_price
  331. # check if tool labels is not empty
  332. labels = agent_thought.tool_labels or {}
  333. tools = agent_thought.tool.split(';') if agent_thought.tool else []
  334. for tool in tools:
  335. if not tool:
  336. continue
  337. if tool not in labels:
  338. tool_label = ToolManager.get_tool_label(tool)
  339. if tool_label:
  340. labels[tool] = tool_label.to_dict()
  341. else:
  342. labels[tool] = {'en_US': tool, 'zh_Hans': tool}
  343. agent_thought.tool_labels_str = json.dumps(labels)
  344. if tool_invoke_meta is not None:
  345. if isinstance(tool_invoke_meta, dict):
  346. try:
  347. tool_invoke_meta = json.dumps(tool_invoke_meta, ensure_ascii=False)
  348. except Exception as e:
  349. tool_invoke_meta = json.dumps(tool_invoke_meta)
  350. agent_thought.tool_meta_str = tool_invoke_meta
  351. db.session.commit()
  352. db.session.close()
  353. def update_db_variables(self, tool_variables: ToolRuntimeVariablePool, db_variables: ToolConversationVariables):
  354. """
  355. convert tool variables to db variables
  356. """
  357. db_variables = db.session.query(ToolConversationVariables).filter(
  358. ToolConversationVariables.conversation_id == self.message.conversation_id,
  359. ).first()
  360. db_variables.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
  361. db_variables.variables_str = json.dumps(jsonable_encoder(tool_variables.pool))
  362. db.session.commit()
  363. db.session.close()
  364. def organize_agent_history(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
  365. """
  366. Organize agent history
  367. """
  368. result = []
  369. # check if there is a system message in the beginning of the conversation
  370. for prompt_message in prompt_messages:
  371. if isinstance(prompt_message, SystemPromptMessage):
  372. result.append(prompt_message)
  373. messages: list[Message] = db.session.query(Message).filter(
  374. Message.conversation_id == self.message.conversation_id,
  375. ).order_by(Message.created_at.asc()).all()
  376. for message in messages:
  377. if message.id == self.message.id:
  378. continue
  379. result.append(self.organize_agent_user_prompt(message))
  380. agent_thoughts: list[MessageAgentThought] = message.agent_thoughts
  381. if agent_thoughts:
  382. for agent_thought in agent_thoughts:
  383. tools = agent_thought.tool
  384. if tools:
  385. tools = tools.split(';')
  386. tool_calls: list[AssistantPromptMessage.ToolCall] = []
  387. tool_call_response: list[ToolPromptMessage] = []
  388. try:
  389. tool_inputs = json.loads(agent_thought.tool_input)
  390. except Exception as e:
  391. tool_inputs = { tool: {} for tool in tools }
  392. try:
  393. tool_responses = json.loads(agent_thought.observation)
  394. except Exception as e:
  395. tool_responses = dict.fromkeys(tools, agent_thought.observation)
  396. for tool in tools:
  397. # generate a uuid for tool call
  398. tool_call_id = str(uuid.uuid4())
  399. tool_calls.append(AssistantPromptMessage.ToolCall(
  400. id=tool_call_id,
  401. type='function',
  402. function=AssistantPromptMessage.ToolCall.ToolCallFunction(
  403. name=tool,
  404. arguments=json.dumps(tool_inputs.get(tool, {})),
  405. )
  406. ))
  407. tool_call_response.append(ToolPromptMessage(
  408. content=tool_responses.get(tool, agent_thought.observation),
  409. name=tool,
  410. tool_call_id=tool_call_id,
  411. ))
  412. result.extend([
  413. AssistantPromptMessage(
  414. content=agent_thought.thought,
  415. tool_calls=tool_calls,
  416. ),
  417. *tool_call_response
  418. ])
  419. if not tools:
  420. result.append(AssistantPromptMessage(content=agent_thought.thought))
  421. else:
  422. if message.answer:
  423. result.append(AssistantPromptMessage(content=message.answer))
  424. db.session.close()
  425. return result
  426. def organize_agent_user_prompt(self, message: Message) -> UserPromptMessage:
  427. message_file_parser = MessageFileParser(
  428. tenant_id=self.tenant_id,
  429. app_id=self.app_config.app_id,
  430. )
  431. files = message.message_files
  432. if files:
  433. file_extra_config = FileUploadConfigManager.convert(message.app_model_config.to_dict())
  434. if file_extra_config:
  435. file_objs = message_file_parser.transform_message_files(
  436. files,
  437. file_extra_config
  438. )
  439. else:
  440. file_objs = []
  441. if not file_objs:
  442. return UserPromptMessage(content=message.query)
  443. else:
  444. prompt_message_contents = [TextPromptMessageContent(data=message.query)]
  445. for file_obj in file_objs:
  446. prompt_message_contents.append(file_obj.prompt_message_content)
  447. return UserPromptMessage(content=prompt_message_contents)
  448. else:
  449. return UserPromptMessage(content=message.query)