dataset_index_tool.py 3.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687
  1. from flask import current_app
  2. from langchain.embeddings import OpenAIEmbeddings
  3. from langchain.tools import BaseTool
  4. from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
  5. from core.embedding.cached_embedding import CacheEmbedding
  6. from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
  7. from core.index.vector_index.vector_index import VectorIndex
  8. from core.llm.llm_builder import LLMBuilder
  9. from models.dataset import Dataset
  10. class DatasetTool(BaseTool):
  11. """Tool for querying a Dataset."""
  12. dataset: Dataset
  13. k: int = 2
  14. def _run(self, tool_input: str) -> str:
  15. if self.dataset.indexing_technique == "economy":
  16. # use keyword table query
  17. kw_table_index = KeywordTableIndex(
  18. dataset=self.dataset,
  19. config=KeywordTableConfig(
  20. max_keywords_per_chunk=5
  21. )
  22. )
  23. documents = kw_table_index.search(tool_input, search_kwargs={'k': self.k})
  24. else:
  25. model_credentials = LLMBuilder.get_model_credentials(
  26. tenant_id=self.dataset.tenant_id,
  27. model_provider=LLMBuilder.get_default_provider(self.dataset.tenant_id, 'text-embedding-ada-002'),
  28. model_name='text-embedding-ada-002'
  29. )
  30. embeddings = CacheEmbedding(OpenAIEmbeddings(
  31. **model_credentials
  32. ))
  33. vector_index = VectorIndex(
  34. dataset=self.dataset,
  35. config=current_app.config,
  36. embeddings=embeddings
  37. )
  38. documents = vector_index.search(
  39. tool_input,
  40. search_type='similarity',
  41. search_kwargs={
  42. 'k': self.k
  43. }
  44. )
  45. hit_callback = DatasetIndexToolCallbackHandler(self.dataset.id)
  46. hit_callback.on_tool_end(documents)
  47. return str("\n".join([document.page_content for document in documents]))
  48. async def _arun(self, tool_input: str) -> str:
  49. model_credentials = LLMBuilder.get_model_credentials(
  50. tenant_id=self.dataset.tenant_id,
  51. model_provider=LLMBuilder.get_default_provider(self.dataset.tenant_id, 'text-embedding-ada-002'),
  52. model_name='text-embedding-ada-002'
  53. )
  54. embeddings = CacheEmbedding(OpenAIEmbeddings(
  55. **model_credentials
  56. ))
  57. vector_index = VectorIndex(
  58. dataset=self.dataset,
  59. config=current_app.config,
  60. embeddings=embeddings
  61. )
  62. documents = await vector_index.asearch(
  63. tool_input,
  64. search_type='similarity',
  65. search_kwargs={
  66. 'k': 10
  67. }
  68. )
  69. hit_callback = DatasetIndexToolCallbackHandler(self.dataset.id)
  70. hit_callback.on_tool_end(documents)
  71. return str("\n".join([document.page_content for document in documents]))