| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 | import osfrom collections.abc import Generatorimport pytestfrom core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDeltafrom core.model_runtime.entities.message_entities import AssistantPromptMessage, SystemPromptMessage, UserPromptMessagefrom core.model_runtime.errors.validate import CredentialsValidateFailedErrorfrom core.model_runtime.model_providers.replicate.llm.llm import ReplicateLargeLanguageModeldef test_validate_credentials():    model = ReplicateLargeLanguageModel()    with pytest.raises(CredentialsValidateFailedError):        model.validate_credentials(            model='meta/llama-2-13b-chat',            credentials={                'replicate_api_token': 'invalid_key',                'model_version': 'f4e2de70d66816a838a89eeeb621910adffb0dd0baba3976c96980970978018d'            }        )    model.validate_credentials(        model='meta/llama-2-13b-chat',        credentials={            'replicate_api_token': os.environ.get('REPLICATE_API_KEY'),            'model_version': 'f4e2de70d66816a838a89eeeb621910adffb0dd0baba3976c96980970978018d'        }    )def test_invoke_model():    model = ReplicateLargeLanguageModel()    response = model.invoke(        model='meta/llama-2-13b-chat',        credentials={            'replicate_api_token': os.environ.get('REPLICATE_API_KEY'),            'model_version': 'f4e2de70d66816a838a89eeeb621910adffb0dd0baba3976c96980970978018d'        },        prompt_messages=[            SystemPromptMessage(                content='You are a helpful AI assistant.',            ),            UserPromptMessage(                content='Who are you?'            )        ],        model_parameters={            'temperature': 1.0,            'top_k': 2,            'top_p': 0.5,        },        stop=['How'],        stream=False,        user="abc-123"    )    assert isinstance(response, LLMResult)    assert len(response.message.content) > 0def test_invoke_stream_model():    model = ReplicateLargeLanguageModel()    response = model.invoke(        model='mistralai/mixtral-8x7b-instruct-v0.1',        credentials={            'replicate_api_token': os.environ.get('REPLICATE_API_KEY'),            'model_version': '2b56576fcfbe32fa0526897d8385dd3fb3d36ba6fd0dbe033c72886b81ade93e'        },        prompt_messages=[            SystemPromptMessage(                content='You are a helpful AI assistant.',            ),            UserPromptMessage(                content='Who are you?'            )        ],        model_parameters={            'temperature': 1.0,            'top_k': 2,            'top_p': 0.5,        },        stop=['How'],        stream=True,        user="abc-123"    )    assert isinstance(response, Generator)    for chunk in response:        assert isinstance(chunk, LLMResultChunk)        assert isinstance(chunk.delta, LLMResultChunkDelta)        assert isinstance(chunk.delta.message, AssistantPromptMessage)def test_get_num_tokens():    model = ReplicateLargeLanguageModel()    num_tokens = model.get_num_tokens(        model='',        credentials={            'replicate_api_token': os.environ.get('REPLICATE_API_KEY'),            'model_version': '2b56576fcfbe32fa0526897d8385dd3fb3d36ba6fd0dbe033c72886b81ade93e'        },        prompt_messages=[            SystemPromptMessage(                content='You are a helpful AI assistant.',            ),            UserPromptMessage(                content='Hello World!'            )        ]    )    assert num_tokens == 14
 |