-LAN- 72bc9d5f2b feat(api/core/app/segments/variables.py): Support description in Variable. (#6636) 1 سال پیش
..
configs 49729647ea bump to 0.6.15 (#6592) 1 سال پیش
constants 5e6fc58db3 Feat/environment variables in workflow (#6515) 1 سال پیش
contexts 5e6fc58db3 Feat/environment variables in workflow (#6515) 1 سال پیش
controllers b347a2f839 Feat/user session id search (#6638) 1 سال پیش
core 72bc9d5f2b feat(api/core/app/segments/variables.py): Support description in Variable. (#6636) 1 سال پیش
docker 5236cb1888 fix: kill signal is not passed to the main process (#6159) 1 سال پیش
events d320d1468d Feat/delete file when clean document (#5882) 1 سال پیش
extensions 7c397f5722 update celery beat scheduler time to env (#6352) 1 سال پیش
fields e4bb943fe5 Feat/delete single dataset retrival (#6570) 1 سال پیش
libs 617847e3c0 fix(api/services/app_generate_service.py): Remove wrong type hints. (#6535) 1 سال پیش
migrations f324374b95 Fix/6615 40 varchar limit on model name (#6623) 1 سال پیش
models f324374b95 Fix/6615 40 varchar limit on model name (#6623) 1 سال پیش
schedule 5e6fc58db3 Feat/environment variables in workflow (#6515) 1 سال پیش
services 05141ede16 chore: optimize asynchronous deletion performance of app related data (#6634) 1 سال پیش
tasks 0625db0bf5 chore: optimize asynchronous workflow deletion performance of app related data (#6639) 1 سال پیش
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) 1 سال پیش
tests 2bc0632d0d fix(segments): Support NoneType. (#6581) 1 سال پیش
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 1 سال پیش
.env.example 7c397f5722 update celery beat scheduler time to env (#6352) 1 سال پیش
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) 1 سال پیش
README.md 2d6624cf9e typo: Update README.md (#5987) 1 سال پیش
app.py 5e6fc58db3 Feat/environment variables in workflow (#6515) 1 سال پیش
commands.py 7c70eb87bc feat: support AnalyticDB vector store (#5586) 1 سال پیش
poetry.lock e4bb943fe5 Feat/delete single dataset retrival (#6570) 1 سال پیش
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 1 سال پیش
pyproject.toml e4bb943fe5 Feat/delete single dataset retrival (#6570) 1 سال پیش

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
    
    secret_key=$(openssl rand -base64 42)
    sed -i '' "/^SECRET_KEY=/c\\
    SECRET_KEY=${secret_key}" .env
    
  3. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies

    poetry env use 3.10
    poetry install
    

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend

    poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
    
  2. Start Dify web service.

  3. Setup your application by visiting http://localhost:3000...

  4. If you need to debug local async processing, please start the worker service.

    poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion
    

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    poetry install --with dev
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    cd ../
    poetry run -C api bash dev/pytest/pytest_all_tests.sh