-LAN- 72bc9d5f2b feat(api/core/app/segments/variables.py): Support description in Variable. (#6636) hai 11 meses
..
configs 49729647ea bump to 0.6.15 (#6592) hai 11 meses
constants 5e6fc58db3 Feat/environment variables in workflow (#6515) hai 11 meses
contexts 5e6fc58db3 Feat/environment variables in workflow (#6515) hai 11 meses
controllers b347a2f839 Feat/user session id search (#6638) hai 11 meses
core 72bc9d5f2b feat(api/core/app/segments/variables.py): Support description in Variable. (#6636) hai 11 meses
docker 5236cb1888 fix: kill signal is not passed to the main process (#6159) hai 11 meses
events d320d1468d Feat/delete file when clean document (#5882) hai 11 meses
extensions 7c397f5722 update celery beat scheduler time to env (#6352) hai 11 meses
fields e4bb943fe5 Feat/delete single dataset retrival (#6570) hai 11 meses
libs 617847e3c0 fix(api/services/app_generate_service.py): Remove wrong type hints. (#6535) hai 11 meses
migrations f324374b95 Fix/6615 40 varchar limit on model name (#6623) hai 11 meses
models f324374b95 Fix/6615 40 varchar limit on model name (#6623) hai 11 meses
schedule 5e6fc58db3 Feat/environment variables in workflow (#6515) hai 11 meses
services 05141ede16 chore: optimize asynchronous deletion performance of app related data (#6634) hai 11 meses
tasks 0625db0bf5 chore: optimize asynchronous workflow deletion performance of app related data (#6639) hai 11 meses
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) hai 11 meses
tests 2bc0632d0d fix(segments): Support NoneType. (#6581) hai 11 meses
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) hai 1 ano
.env.example 7c397f5722 update celery beat scheduler time to env (#6352) hai 11 meses
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) hai 11 meses
README.md 2d6624cf9e typo: Update README.md (#5987) hai 11 meses
app.py 5e6fc58db3 Feat/environment variables in workflow (#6515) hai 11 meses
commands.py 7c70eb87bc feat: support AnalyticDB vector store (#5586) hai 11 meses
poetry.lock e4bb943fe5 Feat/delete single dataset retrival (#6570) hai 11 meses
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) hai 1 ano
pyproject.toml e4bb943fe5 Feat/delete single dataset retrival (#6570) hai 11 meses

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
    
    secret_key=$(openssl rand -base64 42)
    sed -i '' "/^SECRET_KEY=/c\\
    SECRET_KEY=${secret_key}" .env
    
  3. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies

    poetry env use 3.10
    poetry install
    

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend

    poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
    
  2. Start Dify web service.

  3. Setup your application by visiting http://localhost:3000...

  4. If you need to debug local async processing, please start the worker service.

    poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion
    

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    poetry install --with dev
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    cd ../
    poetry run -C api bash dev/pytest/pytest_all_tests.sh