web_reader_tool.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351
  1. import hashlib
  2. import json
  3. import mimetypes
  4. import os
  5. import re
  6. import site
  7. import subprocess
  8. import tempfile
  9. import unicodedata
  10. from contextlib import contextmanager
  11. from urllib.parse import unquote
  12. import chardet
  13. import cloudscraper
  14. from bs4 import BeautifulSoup, CData, Comment, NavigableString
  15. from regex import regex
  16. from core.helper import ssrf_proxy
  17. from core.rag.extractor import extract_processor
  18. from core.rag.extractor.extract_processor import ExtractProcessor
  19. FULL_TEMPLATE = """
  20. TITLE: {title}
  21. AUTHORS: {authors}
  22. PUBLISH DATE: {publish_date}
  23. TOP_IMAGE_URL: {top_image}
  24. TEXT:
  25. {text}
  26. """
  27. def page_result(text: str, cursor: int, max_length: int) -> str:
  28. """Page through `text` and return a substring of `max_length` characters starting from `cursor`."""
  29. return text[cursor: cursor + max_length]
  30. def get_url(url: str, user_agent: str = None) -> str:
  31. """Fetch URL and return the contents as a string."""
  32. headers = {
  33. "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
  34. }
  35. if user_agent:
  36. headers["User-Agent"] = user_agent
  37. main_content_type = None
  38. supported_content_types = extract_processor.SUPPORT_URL_CONTENT_TYPES + ["text/html"]
  39. response = ssrf_proxy.head(url, headers=headers, follow_redirects=True, timeout=(5, 10))
  40. if response.status_code == 200:
  41. # check content-type
  42. content_type = response.headers.get('Content-Type')
  43. if content_type:
  44. main_content_type = response.headers.get('Content-Type').split(';')[0].strip()
  45. else:
  46. content_disposition = response.headers.get('Content-Disposition', '')
  47. filename_match = re.search(r'filename="([^"]+)"', content_disposition)
  48. if filename_match:
  49. filename = unquote(filename_match.group(1))
  50. extension = re.search(r'\.(\w+)$', filename)
  51. if extension:
  52. main_content_type = mimetypes.guess_type(filename)[0]
  53. if main_content_type not in supported_content_types:
  54. return "Unsupported content-type [{}] of URL.".format(main_content_type)
  55. if main_content_type in extract_processor.SUPPORT_URL_CONTENT_TYPES:
  56. return ExtractProcessor.load_from_url(url, return_text=True)
  57. response = ssrf_proxy.get(url, headers=headers, follow_redirects=True, timeout=(120, 300))
  58. elif response.status_code == 403:
  59. scraper = cloudscraper.create_scraper()
  60. scraper.perform_request = ssrf_proxy.make_request
  61. response = scraper.get(url, headers=headers, follow_redirects=True, timeout=(120, 300))
  62. if response.status_code != 200:
  63. return "URL returned status code {}.".format(response.status_code)
  64. # Detect encoding using chardet
  65. detected_encoding = chardet.detect(response.content)
  66. encoding = detected_encoding['encoding']
  67. if encoding:
  68. try:
  69. content = response.content.decode(encoding)
  70. except (UnicodeDecodeError, TypeError):
  71. content = response.text
  72. else:
  73. content = response.text
  74. a = extract_using_readabilipy(content)
  75. if not a['plain_text'] or not a['plain_text'].strip():
  76. return ''
  77. res = FULL_TEMPLATE.format(
  78. title=a['title'],
  79. authors=a['byline'],
  80. publish_date=a['date'],
  81. top_image="",
  82. text=a['plain_text'] if a['plain_text'] else "",
  83. )
  84. return res
  85. def extract_using_readabilipy(html):
  86. with tempfile.NamedTemporaryFile(delete=False, mode='w+') as f_html:
  87. f_html.write(html)
  88. f_html.close()
  89. html_path = f_html.name
  90. # Call Mozilla's Readability.js Readability.parse() function via node, writing output to a temporary file
  91. article_json_path = html_path + ".json"
  92. jsdir = os.path.join(find_module_path('readabilipy'), 'javascript')
  93. with chdir(jsdir):
  94. subprocess.check_call(["node", "ExtractArticle.js", "-i", html_path, "-o", article_json_path])
  95. # Read output of call to Readability.parse() from JSON file and return as Python dictionary
  96. with open(article_json_path, encoding="utf-8") as json_file:
  97. input_json = json.loads(json_file.read())
  98. # Deleting files after processing
  99. os.unlink(article_json_path)
  100. os.unlink(html_path)
  101. article_json = {
  102. "title": None,
  103. "byline": None,
  104. "date": None,
  105. "content": None,
  106. "plain_content": None,
  107. "plain_text": None
  108. }
  109. # Populate article fields from readability fields where present
  110. if input_json:
  111. if input_json.get("title"):
  112. article_json["title"] = input_json["title"]
  113. if input_json.get("byline"):
  114. article_json["byline"] = input_json["byline"]
  115. if input_json.get("date"):
  116. article_json["date"] = input_json["date"]
  117. if input_json.get("content"):
  118. article_json["content"] = input_json["content"]
  119. article_json["plain_content"] = plain_content(article_json["content"], False, False)
  120. article_json["plain_text"] = extract_text_blocks_as_plain_text(article_json["plain_content"])
  121. if input_json.get("textContent"):
  122. article_json["plain_text"] = input_json["textContent"]
  123. article_json["plain_text"] = re.sub(r'\n\s*\n', '\n', article_json["plain_text"])
  124. return article_json
  125. def find_module_path(module_name):
  126. for package_path in site.getsitepackages():
  127. potential_path = os.path.join(package_path, module_name)
  128. if os.path.exists(potential_path):
  129. return potential_path
  130. return None
  131. @contextmanager
  132. def chdir(path):
  133. """Change directory in context and return to original on exit"""
  134. # From https://stackoverflow.com/a/37996581, couldn't find a built-in
  135. original_path = os.getcwd()
  136. os.chdir(path)
  137. try:
  138. yield
  139. finally:
  140. os.chdir(original_path)
  141. def extract_text_blocks_as_plain_text(paragraph_html):
  142. # Load article as DOM
  143. soup = BeautifulSoup(paragraph_html, 'html.parser')
  144. # Select all lists
  145. list_elements = soup.find_all(['ul', 'ol'])
  146. # Prefix text in all list items with "* " and make lists paragraphs
  147. for list_element in list_elements:
  148. plain_items = "".join(list(filter(None, [plain_text_leaf_node(li)["text"] for li in list_element.find_all('li')])))
  149. list_element.string = plain_items
  150. list_element.name = "p"
  151. # Select all text blocks
  152. text_blocks = [s.parent for s in soup.find_all(string=True)]
  153. text_blocks = [plain_text_leaf_node(block) for block in text_blocks]
  154. # Drop empty paragraphs
  155. text_blocks = list(filter(lambda p: p["text"] is not None, text_blocks))
  156. return text_blocks
  157. def plain_text_leaf_node(element):
  158. # Extract all text, stripped of any child HTML elements and normalise it
  159. plain_text = normalise_text(element.get_text())
  160. if plain_text != "" and element.name == "li":
  161. plain_text = "* {}, ".format(plain_text)
  162. if plain_text == "":
  163. plain_text = None
  164. if "data-node-index" in element.attrs:
  165. plain = {"node_index": element["data-node-index"], "text": plain_text}
  166. else:
  167. plain = {"text": plain_text}
  168. return plain
  169. def plain_content(readability_content, content_digests, node_indexes):
  170. # Load article as DOM
  171. soup = BeautifulSoup(readability_content, 'html.parser')
  172. # Make all elements plain
  173. elements = plain_elements(soup.contents, content_digests, node_indexes)
  174. if node_indexes:
  175. # Add node index attributes to nodes
  176. elements = [add_node_indexes(element) for element in elements]
  177. # Replace article contents with plain elements
  178. soup.contents = elements
  179. return str(soup)
  180. def plain_elements(elements, content_digests, node_indexes):
  181. # Get plain content versions of all elements
  182. elements = [plain_element(element, content_digests, node_indexes)
  183. for element in elements]
  184. if content_digests:
  185. # Add content digest attribute to nodes
  186. elements = [add_content_digest(element) for element in elements]
  187. return elements
  188. def plain_element(element, content_digests, node_indexes):
  189. # For lists, we make each item plain text
  190. if is_leaf(element):
  191. # For leaf node elements, extract the text content, discarding any HTML tags
  192. # 1. Get element contents as text
  193. plain_text = element.get_text()
  194. # 2. Normalise the extracted text string to a canonical representation
  195. plain_text = normalise_text(plain_text)
  196. # 3. Update element content to be plain text
  197. element.string = plain_text
  198. elif is_text(element):
  199. if is_non_printing(element):
  200. # The simplified HTML may have come from Readability.js so might
  201. # have non-printing text (e.g. Comment or CData). In this case, we
  202. # keep the structure, but ensure that the string is empty.
  203. element = type(element)("")
  204. else:
  205. plain_text = element.string
  206. plain_text = normalise_text(plain_text)
  207. element = type(element)(plain_text)
  208. else:
  209. # If not a leaf node or leaf type call recursively on child nodes, replacing
  210. element.contents = plain_elements(element.contents, content_digests, node_indexes)
  211. return element
  212. def add_node_indexes(element, node_index="0"):
  213. # Can't add attributes to string types
  214. if is_text(element):
  215. return element
  216. # Add index to current element
  217. element["data-node-index"] = node_index
  218. # Add index to child elements
  219. for local_idx, child in enumerate(
  220. [c for c in element.contents if not is_text(c)], start=1):
  221. # Can't add attributes to leaf string types
  222. child_index = "{stem}.{local}".format(
  223. stem=node_index, local=local_idx)
  224. add_node_indexes(child, node_index=child_index)
  225. return element
  226. def normalise_text(text):
  227. """Normalise unicode and whitespace."""
  228. # Normalise unicode first to try and standardise whitespace characters as much as possible before normalising them
  229. text = strip_control_characters(text)
  230. text = normalise_unicode(text)
  231. text = normalise_whitespace(text)
  232. return text
  233. def strip_control_characters(text):
  234. """Strip out unicode control characters which might break the parsing."""
  235. # Unicode control characters
  236. # [Cc]: Other, Control [includes new lines]
  237. # [Cf]: Other, Format
  238. # [Cn]: Other, Not Assigned
  239. # [Co]: Other, Private Use
  240. # [Cs]: Other, Surrogate
  241. control_chars = {'Cc', 'Cf', 'Cn', 'Co', 'Cs'}
  242. retained_chars = ['\t', '\n', '\r', '\f']
  243. # Remove non-printing control characters
  244. return "".join(["" if (unicodedata.category(char) in control_chars) and (char not in retained_chars) else char for char in text])
  245. def normalise_unicode(text):
  246. """Normalise unicode such that things that are visually equivalent map to the same unicode string where possible."""
  247. normal_form = "NFKC"
  248. text = unicodedata.normalize(normal_form, text)
  249. return text
  250. def normalise_whitespace(text):
  251. """Replace runs of whitespace characters with a single space as this is what happens when HTML text is displayed."""
  252. text = regex.sub(r"\s+", " ", text)
  253. # Remove leading and trailing whitespace
  254. text = text.strip()
  255. return text
  256. def is_leaf(element):
  257. return (element.name in ['p', 'li'])
  258. def is_text(element):
  259. return isinstance(element, NavigableString)
  260. def is_non_printing(element):
  261. return any(isinstance(element, _e) for _e in [Comment, CData])
  262. def add_content_digest(element):
  263. if not is_text(element):
  264. element["data-content-digest"] = content_digest(element)
  265. return element
  266. def content_digest(element):
  267. if is_text(element):
  268. # Hash
  269. trimmed_string = element.string.strip()
  270. if trimmed_string == "":
  271. digest = ""
  272. else:
  273. digest = hashlib.sha256(trimmed_string.encode('utf-8')).hexdigest()
  274. else:
  275. contents = element.contents
  276. num_contents = len(contents)
  277. if num_contents == 0:
  278. # No hash when no child elements exist
  279. digest = ""
  280. elif num_contents == 1:
  281. # If single child, use digest of child
  282. digest = content_digest(contents[0])
  283. else:
  284. # Build content digest from the "non-empty" digests of child nodes
  285. digest = hashlib.sha256()
  286. child_digests = list(
  287. filter(lambda x: x != "", [content_digest(content) for content in contents]))
  288. for child in child_digests:
  289. digest.update(child.encode('utf-8'))
  290. digest = digest.hexdigest()
  291. return digest