chenxu9741 6ef401a9f0 feat:add tts-streaming config and future (#5492) 9 kuukautta sitten
..
configs 17f22347ae bump to 0.6.13 (#6078) 9 kuukautta sitten
constants 6ef401a9f0 feat:add tts-streaming config and future (#5492) 9 kuukautta sitten
controllers 6ef401a9f0 feat:add tts-streaming config and future (#5492) 9 kuukautta sitten
core 6ef401a9f0 feat:add tts-streaming config and future (#5492) 9 kuukautta sitten
docker cb09dbef66 feat: correctly delete applications using Celery workers (#5787) 10 kuukautta sitten
events cb09dbef66 feat: correctly delete applications using Celery workers (#5787) 10 kuukautta sitten
extensions cbbe28f40d fix azure stream download (#6063) 9 kuukautta sitten
fields 4c0a31d38b FR: #4048 - Add color customization to the chatbot (#4885) 10 kuukautta sitten
libs 00b4cc3cd4 feat: implement forgot password feature (#5534) 10 kuukautta sitten
migrations 79df8825c8 Revert "feat: knowledge admin role" (#6018) 10 kuukautta sitten
models 79df8825c8 Revert "feat: knowledge admin role" (#6018) 10 kuukautta sitten
schedule 6c4e6bf1d6 Feat/dify rag (#2528) 1 vuosi sitten
services 6ef401a9f0 feat:add tts-streaming config and future (#5492) 9 kuukautta sitten
tasks 00b4cc3cd4 feat: implement forgot password feature (#5534) 10 kuukautta sitten
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) 10 kuukautta sitten
tests c436454cd4 fix(configs): Update pydantic settings in config files (#6023) 9 kuukautta sitten
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 10 kuukautta sitten
.env.example 1d3e96ffa6 add support oracle oci object storage (#5616) 10 kuukautta sitten
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) 9 kuukautta sitten
README.md 2d6624cf9e typo: Update README.md (#5987) 10 kuukautta sitten
app.py d7f75d17cc Chore/remove-unused-code (#5917) 10 kuukautta sitten
commands.py cb8feb732f refactor: Create a `dify_config` with Pydantic. (#5938) 10 kuukautta sitten
poetry.lock 68b1d063f7 chore: remove tsne unused code (#6077) 9 kuukautta sitten
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 10 kuukautta sitten
pyproject.toml 6ef401a9f0 feat:add tts-streaming config and future (#5492) 9 kuukautta sitten

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
    
    secret_key=$(openssl rand -base64 42)
    sed -i '' "/^SECRET_KEY=/c\\
    SECRET_KEY=${secret_key}" .env
    
  3. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies

    poetry env use 3.10
    poetry install
    

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend

    poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
    
  2. Start Dify web service.

  3. Setup your application by visiting http://localhost:3000...

  4. If you need to debug local async processing, please start the worker service.

    poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion
    

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    poetry install --with dev
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    cd ../
    poetry run -C api bash dev/pytest/pytest_all_tests.sh