dataset_retrieval.py 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714
  1. import math
  2. import threading
  3. from collections import Counter
  4. from typing import Optional, cast
  5. from flask import Flask, current_app
  6. from core.app.app_config.entities import DatasetEntity, DatasetRetrieveConfigEntity
  7. from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
  8. from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
  9. from core.entities.agent_entities import PlanningStrategy
  10. from core.memory.token_buffer_memory import TokenBufferMemory
  11. from core.model_manager import ModelInstance, ModelManager
  12. from core.model_runtime.entities.message_entities import PromptMessageTool
  13. from core.model_runtime.entities.model_entities import ModelFeature, ModelType
  14. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  15. from core.ops.entities.trace_entity import TraceTaskName
  16. from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
  17. from core.ops.utils import measure_time
  18. from core.rag.data_post_processor.data_post_processor import DataPostProcessor
  19. from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
  20. from core.rag.datasource.retrieval_service import RetrievalService
  21. from core.rag.entities.context_entities import DocumentContext
  22. from core.rag.models.document import Document
  23. from core.rag.rerank.rerank_type import RerankMode
  24. from core.rag.retrieval.retrieval_methods import RetrievalMethod
  25. from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
  26. from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
  27. from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
  28. from core.tools.tool.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
  29. from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
  30. from extensions.ext_database import db
  31. from models.dataset import Dataset, DatasetQuery, DocumentSegment
  32. from models.dataset import Document as DatasetDocument
  33. from services.external_knowledge_service import ExternalDatasetService
  34. default_retrieval_model = {
  35. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  36. "reranking_enable": False,
  37. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  38. "top_k": 2,
  39. "score_threshold_enabled": False,
  40. }
  41. class DatasetRetrieval:
  42. def __init__(self, application_generate_entity=None):
  43. self.application_generate_entity = application_generate_entity
  44. def retrieve(
  45. self,
  46. app_id: str,
  47. user_id: str,
  48. tenant_id: str,
  49. model_config: ModelConfigWithCredentialsEntity,
  50. config: DatasetEntity,
  51. query: str,
  52. invoke_from: InvokeFrom,
  53. show_retrieve_source: bool,
  54. hit_callback: DatasetIndexToolCallbackHandler,
  55. message_id: str,
  56. memory: Optional[TokenBufferMemory] = None,
  57. ) -> Optional[str]:
  58. """
  59. Retrieve dataset.
  60. :param app_id: app_id
  61. :param user_id: user_id
  62. :param tenant_id: tenant id
  63. :param model_config: model config
  64. :param config: dataset config
  65. :param query: query
  66. :param invoke_from: invoke from
  67. :param show_retrieve_source: show retrieve source
  68. :param hit_callback: hit callback
  69. :param message_id: message id
  70. :param memory: memory
  71. :return:
  72. """
  73. dataset_ids = config.dataset_ids
  74. if len(dataset_ids) == 0:
  75. return None
  76. retrieve_config = config.retrieve_config
  77. # check model is support tool calling
  78. model_type_instance = model_config.provider_model_bundle.model_type_instance
  79. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  80. model_manager = ModelManager()
  81. model_instance = model_manager.get_model_instance(
  82. tenant_id=tenant_id, model_type=ModelType.LLM, provider=model_config.provider, model=model_config.model
  83. )
  84. # get model schema
  85. model_schema = model_type_instance.get_model_schema(
  86. model=model_config.model, credentials=model_config.credentials
  87. )
  88. if not model_schema:
  89. return None
  90. planning_strategy = PlanningStrategy.REACT_ROUTER
  91. features = model_schema.features
  92. if features:
  93. if ModelFeature.TOOL_CALL in features or ModelFeature.MULTI_TOOL_CALL in features:
  94. planning_strategy = PlanningStrategy.ROUTER
  95. available_datasets = []
  96. for dataset_id in dataset_ids:
  97. # get dataset from dataset id
  98. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  99. # pass if dataset is not available
  100. if not dataset:
  101. continue
  102. # pass if dataset is not available
  103. if dataset and dataset.available_document_count == 0 and dataset.provider != "external":
  104. continue
  105. available_datasets.append(dataset)
  106. all_documents = []
  107. user_from = "account" if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end_user"
  108. if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
  109. all_documents = self.single_retrieve(
  110. app_id,
  111. tenant_id,
  112. user_id,
  113. user_from,
  114. available_datasets,
  115. query,
  116. model_instance,
  117. model_config,
  118. planning_strategy,
  119. message_id,
  120. )
  121. elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
  122. all_documents = self.multiple_retrieve(
  123. app_id,
  124. tenant_id,
  125. user_id,
  126. user_from,
  127. available_datasets,
  128. query,
  129. retrieve_config.top_k,
  130. retrieve_config.score_threshold,
  131. retrieve_config.rerank_mode,
  132. retrieve_config.reranking_model,
  133. retrieve_config.weights,
  134. retrieve_config.reranking_enabled,
  135. message_id,
  136. )
  137. dify_documents = [item for item in all_documents if item.provider == "dify"]
  138. external_documents = [item for item in all_documents if item.provider == "external"]
  139. document_context_list = []
  140. retrieval_resource_list = []
  141. # deal with external documents
  142. for item in external_documents:
  143. document_context_list.append(DocumentContext(content=item.page_content, score=item.metadata.get("score")))
  144. source = {
  145. "dataset_id": item.metadata.get("dataset_id"),
  146. "dataset_name": item.metadata.get("dataset_name"),
  147. "document_name": item.metadata.get("title"),
  148. "data_source_type": "external",
  149. "retriever_from": invoke_from.to_source(),
  150. "score": item.metadata.get("score"),
  151. "content": item.page_content,
  152. }
  153. retrieval_resource_list.append(source)
  154. document_score_list = {}
  155. # deal with dify documents
  156. if dify_documents:
  157. for item in dify_documents:
  158. if item.metadata.get("score"):
  159. document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
  160. index_node_ids = [document.metadata["doc_id"] for document in dify_documents]
  161. segments = DocumentSegment.query.filter(
  162. DocumentSegment.dataset_id.in_(dataset_ids),
  163. DocumentSegment.status == "completed",
  164. DocumentSegment.enabled == True,
  165. DocumentSegment.index_node_id.in_(index_node_ids),
  166. ).all()
  167. if segments:
  168. index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
  169. sorted_segments = sorted(
  170. segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
  171. )
  172. for segment in sorted_segments:
  173. if segment.answer:
  174. document_context_list.append(
  175. DocumentContext(
  176. content=f"question:{segment.get_sign_content()} answer:{segment.answer}",
  177. score=document_score_list.get(segment.index_node_id, None),
  178. )
  179. )
  180. else:
  181. document_context_list.append(
  182. DocumentContext(
  183. content=segment.get_sign_content(),
  184. score=document_score_list.get(segment.index_node_id, None),
  185. )
  186. )
  187. if show_retrieve_source:
  188. for segment in sorted_segments:
  189. dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
  190. document = DatasetDocument.query.filter(
  191. DatasetDocument.id == segment.document_id,
  192. DatasetDocument.enabled == True,
  193. DatasetDocument.archived == False,
  194. ).first()
  195. if dataset and document:
  196. source = {
  197. "dataset_id": dataset.id,
  198. "dataset_name": dataset.name,
  199. "document_id": document.id,
  200. "document_name": document.name,
  201. "data_source_type": document.data_source_type,
  202. "segment_id": segment.id,
  203. "retriever_from": invoke_from.to_source(),
  204. "score": document_score_list.get(segment.index_node_id, 0.0),
  205. }
  206. if invoke_from.to_source() == "dev":
  207. source["hit_count"] = segment.hit_count
  208. source["word_count"] = segment.word_count
  209. source["segment_position"] = segment.position
  210. source["index_node_hash"] = segment.index_node_hash
  211. if segment.answer:
  212. source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
  213. else:
  214. source["content"] = segment.content
  215. retrieval_resource_list.append(source)
  216. if hit_callback and retrieval_resource_list:
  217. retrieval_resource_list = sorted(retrieval_resource_list, key=lambda x: x.get("score") or 0.0, reverse=True)
  218. for position, item in enumerate(retrieval_resource_list, start=1):
  219. item["position"] = position
  220. hit_callback.return_retriever_resource_info(retrieval_resource_list)
  221. if document_context_list:
  222. document_context_list = sorted(document_context_list, key=lambda x: x.score or 0.0, reverse=True)
  223. return str("\n".join([document_context.content for document_context in document_context_list]))
  224. return ""
  225. def single_retrieve(
  226. self,
  227. app_id: str,
  228. tenant_id: str,
  229. user_id: str,
  230. user_from: str,
  231. available_datasets: list,
  232. query: str,
  233. model_instance: ModelInstance,
  234. model_config: ModelConfigWithCredentialsEntity,
  235. planning_strategy: PlanningStrategy,
  236. message_id: Optional[str] = None,
  237. ):
  238. tools = []
  239. for dataset in available_datasets:
  240. description = dataset.description
  241. if not description:
  242. description = "useful for when you want to answer queries about the " + dataset.name
  243. description = description.replace("\n", "").replace("\r", "")
  244. message_tool = PromptMessageTool(
  245. name=dataset.id,
  246. description=description,
  247. parameters={
  248. "type": "object",
  249. "properties": {},
  250. "required": [],
  251. },
  252. )
  253. tools.append(message_tool)
  254. dataset_id = None
  255. if planning_strategy == PlanningStrategy.REACT_ROUTER:
  256. react_multi_dataset_router = ReactMultiDatasetRouter()
  257. dataset_id = react_multi_dataset_router.invoke(
  258. query, tools, model_config, model_instance, user_id, tenant_id
  259. )
  260. elif planning_strategy == PlanningStrategy.ROUTER:
  261. function_call_router = FunctionCallMultiDatasetRouter()
  262. dataset_id = function_call_router.invoke(query, tools, model_config, model_instance)
  263. if dataset_id:
  264. # get retrieval model config
  265. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  266. if dataset:
  267. results = []
  268. if dataset.provider == "external":
  269. external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
  270. tenant_id=dataset.tenant_id,
  271. dataset_id=dataset_id,
  272. query=query,
  273. external_retrieval_parameters=dataset.retrieval_model,
  274. )
  275. for external_document in external_documents:
  276. document = Document(
  277. page_content=external_document.get("content"),
  278. metadata=external_document.get("metadata"),
  279. provider="external",
  280. )
  281. document.metadata["score"] = external_document.get("score")
  282. document.metadata["title"] = external_document.get("title")
  283. document.metadata["dataset_id"] = dataset_id
  284. document.metadata["dataset_name"] = dataset.name
  285. results.append(document)
  286. else:
  287. retrieval_model_config = dataset.retrieval_model or default_retrieval_model
  288. # get top k
  289. top_k = retrieval_model_config["top_k"]
  290. # get retrieval method
  291. if dataset.indexing_technique == "economy":
  292. retrieval_method = "keyword_search"
  293. else:
  294. retrieval_method = retrieval_model_config["search_method"]
  295. # get reranking model
  296. reranking_model = (
  297. retrieval_model_config["reranking_model"]
  298. if retrieval_model_config["reranking_enable"]
  299. else None
  300. )
  301. # get score threshold
  302. score_threshold = 0.0
  303. score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
  304. if score_threshold_enabled:
  305. score_threshold = retrieval_model_config.get("score_threshold")
  306. with measure_time() as timer:
  307. results = RetrievalService.retrieve(
  308. retrieval_method=retrieval_method,
  309. dataset_id=dataset.id,
  310. query=query,
  311. top_k=top_k,
  312. score_threshold=score_threshold,
  313. reranking_model=reranking_model,
  314. reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
  315. weights=retrieval_model_config.get("weights", None),
  316. )
  317. self._on_query(query, [dataset_id], app_id, user_from, user_id)
  318. if results:
  319. self._on_retrieval_end(results, message_id, timer)
  320. return results
  321. return []
  322. def multiple_retrieve(
  323. self,
  324. app_id: str,
  325. tenant_id: str,
  326. user_id: str,
  327. user_from: str,
  328. available_datasets: list,
  329. query: str,
  330. top_k: int,
  331. score_threshold: float,
  332. reranking_mode: str,
  333. reranking_model: Optional[dict] = None,
  334. weights: Optional[dict] = None,
  335. reranking_enable: bool = True,
  336. message_id: Optional[str] = None,
  337. ):
  338. if not available_datasets:
  339. return []
  340. threads = []
  341. all_documents = []
  342. dataset_ids = [dataset.id for dataset in available_datasets]
  343. index_type_check = all(
  344. item.indexing_technique == available_datasets[0].indexing_technique for item in available_datasets
  345. )
  346. if not index_type_check and (not reranking_enable or reranking_mode != RerankMode.RERANKING_MODEL):
  347. raise ValueError(
  348. "The configured knowledge base list have different indexing technique, please set reranking model."
  349. )
  350. index_type = available_datasets[0].indexing_technique
  351. if index_type == "high_quality":
  352. embedding_model_check = all(
  353. item.embedding_model == available_datasets[0].embedding_model for item in available_datasets
  354. )
  355. embedding_model_provider_check = all(
  356. item.embedding_model_provider == available_datasets[0].embedding_model_provider
  357. for item in available_datasets
  358. )
  359. if (
  360. reranking_enable
  361. and reranking_mode == "weighted_score"
  362. and (not embedding_model_check or not embedding_model_provider_check)
  363. ):
  364. raise ValueError(
  365. "The configured knowledge base list have different embedding model, please set reranking model."
  366. )
  367. if reranking_enable and reranking_mode == RerankMode.WEIGHTED_SCORE:
  368. weights["vector_setting"]["embedding_provider_name"] = available_datasets[0].embedding_model_provider
  369. weights["vector_setting"]["embedding_model_name"] = available_datasets[0].embedding_model
  370. for dataset in available_datasets:
  371. index_type = dataset.indexing_technique
  372. retrieval_thread = threading.Thread(
  373. target=self._retriever,
  374. kwargs={
  375. "flask_app": current_app._get_current_object(),
  376. "dataset_id": dataset.id,
  377. "query": query,
  378. "top_k": top_k,
  379. "all_documents": all_documents,
  380. },
  381. )
  382. threads.append(retrieval_thread)
  383. retrieval_thread.start()
  384. for thread in threads:
  385. thread.join()
  386. with measure_time() as timer:
  387. if reranking_enable:
  388. # do rerank for searched documents
  389. data_post_processor = DataPostProcessor(tenant_id, reranking_mode, reranking_model, weights, False)
  390. all_documents = data_post_processor.invoke(
  391. query=query, documents=all_documents, score_threshold=score_threshold, top_n=top_k
  392. )
  393. else:
  394. if index_type == "economy":
  395. all_documents = self.calculate_keyword_score(query, all_documents, top_k)
  396. elif index_type == "high_quality":
  397. all_documents = self.calculate_vector_score(all_documents, top_k, score_threshold)
  398. self._on_query(query, dataset_ids, app_id, user_from, user_id)
  399. if all_documents:
  400. self._on_retrieval_end(all_documents, message_id, timer)
  401. return all_documents
  402. def _on_retrieval_end(
  403. self, documents: list[Document], message_id: Optional[str] = None, timer: Optional[dict] = None
  404. ) -> None:
  405. """Handle retrieval end."""
  406. dify_documents = [document for document in documents if document.provider == "dify"]
  407. for document in dify_documents:
  408. query = db.session.query(DocumentSegment).filter(
  409. DocumentSegment.index_node_id == document.metadata["doc_id"]
  410. )
  411. # if 'dataset_id' in document.metadata:
  412. if "dataset_id" in document.metadata:
  413. query = query.filter(DocumentSegment.dataset_id == document.metadata["dataset_id"])
  414. # add hit count to document segment
  415. query.update({DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False)
  416. db.session.commit()
  417. # get tracing instance
  418. trace_manager: TraceQueueManager = (
  419. self.application_generate_entity.trace_manager if self.application_generate_entity else None
  420. )
  421. if trace_manager:
  422. trace_manager.add_trace_task(
  423. TraceTask(
  424. TraceTaskName.DATASET_RETRIEVAL_TRACE, message_id=message_id, documents=documents, timer=timer
  425. )
  426. )
  427. def _on_query(self, query: str, dataset_ids: list[str], app_id: str, user_from: str, user_id: str) -> None:
  428. """
  429. Handle query.
  430. """
  431. if not query:
  432. return
  433. dataset_queries = []
  434. for dataset_id in dataset_ids:
  435. dataset_query = DatasetQuery(
  436. dataset_id=dataset_id,
  437. content=query,
  438. source="app",
  439. source_app_id=app_id,
  440. created_by_role=user_from,
  441. created_by=user_id,
  442. )
  443. dataset_queries.append(dataset_query)
  444. if dataset_queries:
  445. db.session.add_all(dataset_queries)
  446. db.session.commit()
  447. def _retriever(self, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list):
  448. with flask_app.app_context():
  449. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  450. if not dataset:
  451. return []
  452. if dataset.provider == "external":
  453. external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
  454. tenant_id=dataset.tenant_id,
  455. dataset_id=dataset_id,
  456. query=query,
  457. external_retrieval_parameters=dataset.retrieval_model,
  458. )
  459. for external_document in external_documents:
  460. document = Document(
  461. page_content=external_document.get("content"),
  462. metadata=external_document.get("metadata"),
  463. provider="external",
  464. )
  465. document.metadata["score"] = external_document.get("score")
  466. document.metadata["title"] = external_document.get("title")
  467. document.metadata["dataset_id"] = dataset_id
  468. document.metadata["dataset_name"] = dataset.name
  469. all_documents.append(document)
  470. else:
  471. # get retrieval model , if the model is not setting , using default
  472. retrieval_model = dataset.retrieval_model or default_retrieval_model
  473. if dataset.indexing_technique == "economy":
  474. # use keyword table query
  475. documents = RetrievalService.retrieve(
  476. retrieval_method="keyword_search", dataset_id=dataset.id, query=query, top_k=top_k
  477. )
  478. if documents:
  479. all_documents.extend(documents)
  480. else:
  481. if top_k > 0:
  482. # retrieval source
  483. documents = RetrievalService.retrieve(
  484. retrieval_method=retrieval_model["search_method"],
  485. dataset_id=dataset.id,
  486. query=query,
  487. top_k=retrieval_model.get("top_k") or 2,
  488. score_threshold=retrieval_model.get("score_threshold", 0.0)
  489. if retrieval_model["score_threshold_enabled"]
  490. else 0.0,
  491. reranking_model=retrieval_model.get("reranking_model", None)
  492. if retrieval_model["reranking_enable"]
  493. else None,
  494. reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
  495. weights=retrieval_model.get("weights", None),
  496. )
  497. all_documents.extend(documents)
  498. def to_dataset_retriever_tool(
  499. self,
  500. tenant_id: str,
  501. dataset_ids: list[str],
  502. retrieve_config: DatasetRetrieveConfigEntity,
  503. return_resource: bool,
  504. invoke_from: InvokeFrom,
  505. hit_callback: DatasetIndexToolCallbackHandler,
  506. ) -> Optional[list[DatasetRetrieverBaseTool]]:
  507. """
  508. A dataset tool is a tool that can be used to retrieve information from a dataset
  509. :param tenant_id: tenant id
  510. :param dataset_ids: dataset ids
  511. :param retrieve_config: retrieve config
  512. :param return_resource: return resource
  513. :param invoke_from: invoke from
  514. :param hit_callback: hit callback
  515. """
  516. tools = []
  517. available_datasets = []
  518. for dataset_id in dataset_ids:
  519. # get dataset from dataset id
  520. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  521. # pass if dataset is not available
  522. if not dataset:
  523. continue
  524. # pass if dataset is not available
  525. if dataset and dataset.provider != "external" and dataset.available_document_count == 0:
  526. continue
  527. available_datasets.append(dataset)
  528. if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
  529. # get retrieval model config
  530. default_retrieval_model = {
  531. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  532. "reranking_enable": False,
  533. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  534. "top_k": 2,
  535. "score_threshold_enabled": False,
  536. }
  537. for dataset in available_datasets:
  538. retrieval_model_config = dataset.retrieval_model or default_retrieval_model
  539. # get top k
  540. top_k = retrieval_model_config["top_k"]
  541. # get score threshold
  542. score_threshold = None
  543. score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
  544. if score_threshold_enabled:
  545. score_threshold = retrieval_model_config.get("score_threshold")
  546. tool = DatasetRetrieverTool.from_dataset(
  547. dataset=dataset,
  548. top_k=top_k,
  549. score_threshold=score_threshold,
  550. hit_callbacks=[hit_callback],
  551. return_resource=return_resource,
  552. retriever_from=invoke_from.to_source(),
  553. )
  554. tools.append(tool)
  555. elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
  556. tool = DatasetMultiRetrieverTool.from_dataset(
  557. dataset_ids=[dataset.id for dataset in available_datasets],
  558. tenant_id=tenant_id,
  559. top_k=retrieve_config.top_k or 2,
  560. score_threshold=retrieve_config.score_threshold,
  561. hit_callbacks=[hit_callback],
  562. return_resource=return_resource,
  563. retriever_from=invoke_from.to_source(),
  564. reranking_provider_name=retrieve_config.reranking_model.get("reranking_provider_name"),
  565. reranking_model_name=retrieve_config.reranking_model.get("reranking_model_name"),
  566. )
  567. tools.append(tool)
  568. return tools
  569. def calculate_keyword_score(self, query: str, documents: list[Document], top_k: int) -> list[Document]:
  570. """
  571. Calculate keywords scores
  572. :param query: search query
  573. :param documents: documents for reranking
  574. :return:
  575. """
  576. keyword_table_handler = JiebaKeywordTableHandler()
  577. query_keywords = keyword_table_handler.extract_keywords(query, None)
  578. documents_keywords = []
  579. for document in documents:
  580. # get the document keywords
  581. document_keywords = keyword_table_handler.extract_keywords(document.page_content, None)
  582. document.metadata["keywords"] = document_keywords
  583. documents_keywords.append(document_keywords)
  584. # Counter query keywords(TF)
  585. query_keyword_counts = Counter(query_keywords)
  586. # total documents
  587. total_documents = len(documents)
  588. # calculate all documents' keywords IDF
  589. all_keywords = set()
  590. for document_keywords in documents_keywords:
  591. all_keywords.update(document_keywords)
  592. keyword_idf = {}
  593. for keyword in all_keywords:
  594. # calculate include query keywords' documents
  595. doc_count_containing_keyword = sum(1 for doc_keywords in documents_keywords if keyword in doc_keywords)
  596. # IDF
  597. keyword_idf[keyword] = math.log((1 + total_documents) / (1 + doc_count_containing_keyword)) + 1
  598. query_tfidf = {}
  599. for keyword, count in query_keyword_counts.items():
  600. tf = count
  601. idf = keyword_idf.get(keyword, 0)
  602. query_tfidf[keyword] = tf * idf
  603. # calculate all documents' TF-IDF
  604. documents_tfidf = []
  605. for document_keywords in documents_keywords:
  606. document_keyword_counts = Counter(document_keywords)
  607. document_tfidf = {}
  608. for keyword, count in document_keyword_counts.items():
  609. tf = count
  610. idf = keyword_idf.get(keyword, 0)
  611. document_tfidf[keyword] = tf * idf
  612. documents_tfidf.append(document_tfidf)
  613. def cosine_similarity(vec1, vec2):
  614. intersection = set(vec1.keys()) & set(vec2.keys())
  615. numerator = sum(vec1[x] * vec2[x] for x in intersection)
  616. sum1 = sum(vec1[x] ** 2 for x in vec1)
  617. sum2 = sum(vec2[x] ** 2 for x in vec2)
  618. denominator = math.sqrt(sum1) * math.sqrt(sum2)
  619. if not denominator:
  620. return 0.0
  621. else:
  622. return float(numerator) / denominator
  623. similarities = []
  624. for document_tfidf in documents_tfidf:
  625. similarity = cosine_similarity(query_tfidf, document_tfidf)
  626. similarities.append(similarity)
  627. for document, score in zip(documents, similarities):
  628. # format document
  629. document.metadata["score"] = score
  630. documents = sorted(documents, key=lambda x: x.metadata["score"], reverse=True)
  631. return documents[:top_k] if top_k else documents
  632. def calculate_vector_score(
  633. self, all_documents: list[Document], top_k: int, score_threshold: float
  634. ) -> list[Document]:
  635. filter_documents = []
  636. for document in all_documents:
  637. if score_threshold is None or document.metadata["score"] >= score_threshold:
  638. filter_documents.append(document)
  639. if not filter_documents:
  640. return []
  641. filter_documents = sorted(filter_documents, key=lambda x: x.metadata["score"], reverse=True)
  642. return filter_documents[:top_k] if top_k else filter_documents