web_reader_tool.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443
  1. import hashlib
  2. import json
  3. import os
  4. import re
  5. import site
  6. import subprocess
  7. import tempfile
  8. import unicodedata
  9. from contextlib import contextmanager
  10. from typing import Type, Any
  11. import requests
  12. from bs4 import BeautifulSoup, NavigableString, Comment, CData
  13. from langchain.chains import RefineDocumentsChain
  14. from langchain.chains.summarize import refine_prompts
  15. from langchain.schema import Document
  16. from langchain.text_splitter import RecursiveCharacterTextSplitter
  17. from langchain.tools.base import BaseTool
  18. from newspaper import Article
  19. from pydantic import BaseModel, Field
  20. from regex import regex
  21. from core.chain.llm_chain import LLMChain
  22. from core.data_loader import file_extractor
  23. from core.data_loader.file_extractor import FileExtractor
  24. from core.entities.application_entities import ModelConfigEntity
  25. FULL_TEMPLATE = """
  26. TITLE: {title}
  27. AUTHORS: {authors}
  28. PUBLISH DATE: {publish_date}
  29. TOP_IMAGE_URL: {top_image}
  30. TEXT:
  31. {text}
  32. """
  33. class WebReaderToolInput(BaseModel):
  34. url: str = Field(..., description="URL of the website to read")
  35. summary: bool = Field(
  36. default=False,
  37. description="When the user's question requires extracting the summarizing content of the webpage, "
  38. "set it to true."
  39. )
  40. cursor: int = Field(
  41. default=0,
  42. description="Start reading from this character."
  43. "Use when the first response was truncated"
  44. "and you want to continue reading the page."
  45. "The value cannot exceed 24000.",
  46. )
  47. class WebReaderTool(BaseTool):
  48. """Reader tool for getting website title and contents. Gives more control than SimpleReaderTool."""
  49. name: str = "web_reader"
  50. args_schema: Type[BaseModel] = WebReaderToolInput
  51. description: str = "use this to read a website. " \
  52. "If you can answer the question based on the information provided, " \
  53. "there is no need to use."
  54. page_contents: str = None
  55. url: str = None
  56. max_chunk_length: int = 4000
  57. summary_chunk_tokens: int = 4000
  58. summary_chunk_overlap: int = 0
  59. summary_separators: list[str] = ["\n\n", "。", ".", " ", ""]
  60. continue_reading: bool = True
  61. model_config: ModelConfigEntity
  62. model_parameters: dict[str, Any]
  63. def _run(self, url: str, summary: bool = False, cursor: int = 0) -> str:
  64. try:
  65. if not self.page_contents or self.url != url:
  66. page_contents = get_url(url)
  67. self.page_contents = page_contents
  68. self.url = url
  69. else:
  70. page_contents = self.page_contents
  71. except Exception as e:
  72. return f'Read this website failed, caused by: {str(e)}.'
  73. if summary:
  74. character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
  75. chunk_size=self.summary_chunk_tokens,
  76. chunk_overlap=self.summary_chunk_overlap,
  77. separators=self.summary_separators
  78. )
  79. texts = character_splitter.split_text(page_contents)
  80. docs = [Document(page_content=t) for t in texts]
  81. if len(docs) == 0 or docs[0].page_content.endswith('TEXT:'):
  82. return "No content found."
  83. # only use first 5 docs
  84. if len(docs) > 5:
  85. docs = docs[:5]
  86. chain = self.get_summary_chain()
  87. try:
  88. page_contents = chain.run(docs)
  89. except Exception as e:
  90. return f'Read this website failed, caused by: {str(e)}.'
  91. else:
  92. page_contents = page_result(page_contents, cursor, self.max_chunk_length)
  93. if self.continue_reading and len(page_contents) >= self.max_chunk_length:
  94. page_contents += f"\nPAGE WAS TRUNCATED. IF YOU FIND INFORMATION THAT CAN ANSWER QUESTION " \
  95. f"THEN DIRECT ANSWER AND STOP INVOKING web_reader TOOL, OTHERWISE USE " \
  96. f"CURSOR={cursor+len(page_contents)} TO CONTINUE READING."
  97. return page_contents
  98. async def _arun(self, url: str) -> str:
  99. raise NotImplementedError
  100. def get_summary_chain(self) -> RefineDocumentsChain:
  101. initial_chain = LLMChain(
  102. model_config=self.model_config,
  103. prompt=refine_prompts.PROMPT,
  104. parameters=self.model_parameters
  105. )
  106. refine_chain = LLMChain(
  107. model_config=self.model_config,
  108. prompt=refine_prompts.REFINE_PROMPT,
  109. parameters=self.model_parameters
  110. )
  111. return RefineDocumentsChain(
  112. initial_llm_chain=initial_chain,
  113. refine_llm_chain=refine_chain,
  114. document_variable_name="text",
  115. initial_response_name="existing_answer",
  116. callbacks=self.callbacks
  117. )
  118. def page_result(text: str, cursor: int, max_length: int) -> str:
  119. """Page through `text` and return a substring of `max_length` characters starting from `cursor`."""
  120. return text[cursor: cursor + max_length]
  121. def get_url(url: str) -> str:
  122. """Fetch URL and return the contents as a string."""
  123. headers = {
  124. "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
  125. }
  126. supported_content_types = file_extractor.SUPPORT_URL_CONTENT_TYPES + ["text/html"]
  127. head_response = requests.head(url, headers=headers, allow_redirects=True, timeout=(5, 10))
  128. if head_response.status_code != 200:
  129. return "URL returned status code {}.".format(head_response.status_code)
  130. # check content-type
  131. main_content_type = head_response.headers.get('Content-Type').split(';')[0].strip()
  132. if main_content_type not in supported_content_types:
  133. return "Unsupported content-type [{}] of URL.".format(main_content_type)
  134. if main_content_type in file_extractor.SUPPORT_URL_CONTENT_TYPES:
  135. return FileExtractor.load_from_url(url, return_text=True)
  136. response = requests.get(url, headers=headers, allow_redirects=True, timeout=(5, 30))
  137. a = extract_using_readabilipy(response.text)
  138. if not a['plain_text'] or not a['plain_text'].strip():
  139. return get_url_from_newspaper3k(url)
  140. res = FULL_TEMPLATE.format(
  141. title=a['title'],
  142. authors=a['byline'],
  143. publish_date=a['date'],
  144. top_image="",
  145. text=a['plain_text'] if a['plain_text'] else "",
  146. )
  147. return res
  148. def get_url_from_newspaper3k(url: str) -> str:
  149. a = Article(url)
  150. a.download()
  151. a.parse()
  152. res = FULL_TEMPLATE.format(
  153. title=a.title,
  154. authors=a.authors,
  155. publish_date=a.publish_date,
  156. top_image=a.top_image,
  157. text=a.text,
  158. )
  159. return res
  160. def extract_using_readabilipy(html):
  161. with tempfile.NamedTemporaryFile(delete=False, mode='w+') as f_html:
  162. f_html.write(html)
  163. f_html.close()
  164. html_path = f_html.name
  165. # Call Mozilla's Readability.js Readability.parse() function via node, writing output to a temporary file
  166. article_json_path = html_path + ".json"
  167. jsdir = os.path.join(find_module_path('readabilipy'), 'javascript')
  168. with chdir(jsdir):
  169. subprocess.check_call(["node", "ExtractArticle.js", "-i", html_path, "-o", article_json_path])
  170. # Read output of call to Readability.parse() from JSON file and return as Python dictionary
  171. with open(article_json_path, "r", encoding="utf-8") as json_file:
  172. input_json = json.loads(json_file.read())
  173. # Deleting files after processing
  174. os.unlink(article_json_path)
  175. os.unlink(html_path)
  176. article_json = {
  177. "title": None,
  178. "byline": None,
  179. "date": None,
  180. "content": None,
  181. "plain_content": None,
  182. "plain_text": None
  183. }
  184. # Populate article fields from readability fields where present
  185. if input_json:
  186. if "title" in input_json and input_json["title"]:
  187. article_json["title"] = input_json["title"]
  188. if "byline" in input_json and input_json["byline"]:
  189. article_json["byline"] = input_json["byline"]
  190. if "date" in input_json and input_json["date"]:
  191. article_json["date"] = input_json["date"]
  192. if "content" in input_json and input_json["content"]:
  193. article_json["content"] = input_json["content"]
  194. article_json["plain_content"] = plain_content(article_json["content"], False, False)
  195. article_json["plain_text"] = extract_text_blocks_as_plain_text(article_json["plain_content"])
  196. if "textContent" in input_json and input_json["textContent"]:
  197. article_json["plain_text"] = input_json["textContent"]
  198. article_json["plain_text"] = re.sub(r'\n\s*\n', '\n', article_json["plain_text"])
  199. return article_json
  200. def find_module_path(module_name):
  201. for package_path in site.getsitepackages():
  202. potential_path = os.path.join(package_path, module_name)
  203. if os.path.exists(potential_path):
  204. return potential_path
  205. return None
  206. @contextmanager
  207. def chdir(path):
  208. """Change directory in context and return to original on exit"""
  209. # From https://stackoverflow.com/a/37996581, couldn't find a built-in
  210. original_path = os.getcwd()
  211. os.chdir(path)
  212. try:
  213. yield
  214. finally:
  215. os.chdir(original_path)
  216. def extract_text_blocks_as_plain_text(paragraph_html):
  217. # Load article as DOM
  218. soup = BeautifulSoup(paragraph_html, 'html.parser')
  219. # Select all lists
  220. list_elements = soup.find_all(['ul', 'ol'])
  221. # Prefix text in all list items with "* " and make lists paragraphs
  222. for list_element in list_elements:
  223. plain_items = "".join(list(filter(None, [plain_text_leaf_node(li)["text"] for li in list_element.find_all('li')])))
  224. list_element.string = plain_items
  225. list_element.name = "p"
  226. # Select all text blocks
  227. text_blocks = [s.parent for s in soup.find_all(string=True)]
  228. text_blocks = [plain_text_leaf_node(block) for block in text_blocks]
  229. # Drop empty paragraphs
  230. text_blocks = list(filter(lambda p: p["text"] is not None, text_blocks))
  231. return text_blocks
  232. def plain_text_leaf_node(element):
  233. # Extract all text, stripped of any child HTML elements and normalise it
  234. plain_text = normalise_text(element.get_text())
  235. if plain_text != "" and element.name == "li":
  236. plain_text = "* {}, ".format(plain_text)
  237. if plain_text == "":
  238. plain_text = None
  239. if "data-node-index" in element.attrs:
  240. plain = {"node_index": element["data-node-index"], "text": plain_text}
  241. else:
  242. plain = {"text": plain_text}
  243. return plain
  244. def plain_content(readability_content, content_digests, node_indexes):
  245. # Load article as DOM
  246. soup = BeautifulSoup(readability_content, 'html.parser')
  247. # Make all elements plain
  248. elements = plain_elements(soup.contents, content_digests, node_indexes)
  249. if node_indexes:
  250. # Add node index attributes to nodes
  251. elements = [add_node_indexes(element) for element in elements]
  252. # Replace article contents with plain elements
  253. soup.contents = elements
  254. return str(soup)
  255. def plain_elements(elements, content_digests, node_indexes):
  256. # Get plain content versions of all elements
  257. elements = [plain_element(element, content_digests, node_indexes)
  258. for element in elements]
  259. if content_digests:
  260. # Add content digest attribute to nodes
  261. elements = [add_content_digest(element) for element in elements]
  262. return elements
  263. def plain_element(element, content_digests, node_indexes):
  264. # For lists, we make each item plain text
  265. if is_leaf(element):
  266. # For leaf node elements, extract the text content, discarding any HTML tags
  267. # 1. Get element contents as text
  268. plain_text = element.get_text()
  269. # 2. Normalise the extracted text string to a canonical representation
  270. plain_text = normalise_text(plain_text)
  271. # 3. Update element content to be plain text
  272. element.string = plain_text
  273. elif is_text(element):
  274. if is_non_printing(element):
  275. # The simplified HTML may have come from Readability.js so might
  276. # have non-printing text (e.g. Comment or CData). In this case, we
  277. # keep the structure, but ensure that the string is empty.
  278. element = type(element)("")
  279. else:
  280. plain_text = element.string
  281. plain_text = normalise_text(plain_text)
  282. element = type(element)(plain_text)
  283. else:
  284. # If not a leaf node or leaf type call recursively on child nodes, replacing
  285. element.contents = plain_elements(element.contents, content_digests, node_indexes)
  286. return element
  287. def add_node_indexes(element, node_index="0"):
  288. # Can't add attributes to string types
  289. if is_text(element):
  290. return element
  291. # Add index to current element
  292. element["data-node-index"] = node_index
  293. # Add index to child elements
  294. for local_idx, child in enumerate(
  295. [c for c in element.contents if not is_text(c)], start=1):
  296. # Can't add attributes to leaf string types
  297. child_index = "{stem}.{local}".format(
  298. stem=node_index, local=local_idx)
  299. add_node_indexes(child, node_index=child_index)
  300. return element
  301. def normalise_text(text):
  302. """Normalise unicode and whitespace."""
  303. # Normalise unicode first to try and standardise whitespace characters as much as possible before normalising them
  304. text = strip_control_characters(text)
  305. text = normalise_unicode(text)
  306. text = normalise_whitespace(text)
  307. return text
  308. def strip_control_characters(text):
  309. """Strip out unicode control characters which might break the parsing."""
  310. # Unicode control characters
  311. # [Cc]: Other, Control [includes new lines]
  312. # [Cf]: Other, Format
  313. # [Cn]: Other, Not Assigned
  314. # [Co]: Other, Private Use
  315. # [Cs]: Other, Surrogate
  316. control_chars = set(['Cc', 'Cf', 'Cn', 'Co', 'Cs'])
  317. retained_chars = ['\t', '\n', '\r', '\f']
  318. # Remove non-printing control characters
  319. return "".join(["" if (unicodedata.category(char) in control_chars) and (char not in retained_chars) else char for char in text])
  320. def normalise_unicode(text):
  321. """Normalise unicode such that things that are visually equivalent map to the same unicode string where possible."""
  322. normal_form = "NFKC"
  323. text = unicodedata.normalize(normal_form, text)
  324. return text
  325. def normalise_whitespace(text):
  326. """Replace runs of whitespace characters with a single space as this is what happens when HTML text is displayed."""
  327. text = regex.sub(r"\s+", " ", text)
  328. # Remove leading and trailing whitespace
  329. text = text.strip()
  330. return text
  331. def is_leaf(element):
  332. return (element.name in ['p', 'li'])
  333. def is_text(element):
  334. return isinstance(element, NavigableString)
  335. def is_non_printing(element):
  336. return any(isinstance(element, _e) for _e in [Comment, CData])
  337. def add_content_digest(element):
  338. if not is_text(element):
  339. element["data-content-digest"] = content_digest(element)
  340. return element
  341. def content_digest(element):
  342. if is_text(element):
  343. # Hash
  344. trimmed_string = element.string.strip()
  345. if trimmed_string == "":
  346. digest = ""
  347. else:
  348. digest = hashlib.sha256(trimmed_string.encode('utf-8')).hexdigest()
  349. else:
  350. contents = element.contents
  351. num_contents = len(contents)
  352. if num_contents == 0:
  353. # No hash when no child elements exist
  354. digest = ""
  355. elif num_contents == 1:
  356. # If single child, use digest of child
  357. digest = content_digest(contents[0])
  358. else:
  359. # Build content digest from the "non-empty" digests of child nodes
  360. digest = hashlib.sha256()
  361. child_digests = list(
  362. filter(lambda x: x != "", [content_digest(content) for content in contents]))
  363. for child in child_digests:
  364. digest.update(child.encode('utf-8'))
  365. digest = digest.hexdigest()
  366. return digest