123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443 |
- import hashlib
- import json
- import os
- import re
- import site
- import subprocess
- import tempfile
- import unicodedata
- from contextlib import contextmanager
- from typing import Type, Any
- import requests
- from bs4 import BeautifulSoup, NavigableString, Comment, CData
- from langchain.chains import RefineDocumentsChain
- from langchain.chains.summarize import refine_prompts
- from langchain.schema import Document
- from langchain.text_splitter import RecursiveCharacterTextSplitter
- from langchain.tools.base import BaseTool
- from newspaper import Article
- from pydantic import BaseModel, Field
- from regex import regex
- from core.chain.llm_chain import LLMChain
- from core.data_loader import file_extractor
- from core.data_loader.file_extractor import FileExtractor
- from core.entities.application_entities import ModelConfigEntity
- FULL_TEMPLATE = """
- TITLE: {title}
- AUTHORS: {authors}
- PUBLISH DATE: {publish_date}
- TOP_IMAGE_URL: {top_image}
- TEXT:
- {text}
- """
- class WebReaderToolInput(BaseModel):
- url: str = Field(..., description="URL of the website to read")
- summary: bool = Field(
- default=False,
- description="When the user's question requires extracting the summarizing content of the webpage, "
- "set it to true."
- )
- cursor: int = Field(
- default=0,
- description="Start reading from this character."
- "Use when the first response was truncated"
- "and you want to continue reading the page."
- "The value cannot exceed 24000.",
- )
- class WebReaderTool(BaseTool):
- """Reader tool for getting website title and contents. Gives more control than SimpleReaderTool."""
- name: str = "web_reader"
- args_schema: Type[BaseModel] = WebReaderToolInput
- description: str = "use this to read a website. " \
- "If you can answer the question based on the information provided, " \
- "there is no need to use."
- page_contents: str = None
- url: str = None
- max_chunk_length: int = 4000
- summary_chunk_tokens: int = 4000
- summary_chunk_overlap: int = 0
- summary_separators: list[str] = ["\n\n", "。", ".", " ", ""]
- continue_reading: bool = True
- model_config: ModelConfigEntity
- model_parameters: dict[str, Any]
- def _run(self, url: str, summary: bool = False, cursor: int = 0) -> str:
- try:
- if not self.page_contents or self.url != url:
- page_contents = get_url(url)
- self.page_contents = page_contents
- self.url = url
- else:
- page_contents = self.page_contents
- except Exception as e:
- return f'Read this website failed, caused by: {str(e)}.'
- if summary:
- character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
- chunk_size=self.summary_chunk_tokens,
- chunk_overlap=self.summary_chunk_overlap,
- separators=self.summary_separators
- )
- texts = character_splitter.split_text(page_contents)
- docs = [Document(page_content=t) for t in texts]
- if len(docs) == 0 or docs[0].page_content.endswith('TEXT:'):
- return "No content found."
- # only use first 5 docs
- if len(docs) > 5:
- docs = docs[:5]
- chain = self.get_summary_chain()
- try:
- page_contents = chain.run(docs)
- except Exception as e:
- return f'Read this website failed, caused by: {str(e)}.'
- else:
- page_contents = page_result(page_contents, cursor, self.max_chunk_length)
- if self.continue_reading and len(page_contents) >= self.max_chunk_length:
- page_contents += f"\nPAGE WAS TRUNCATED. IF YOU FIND INFORMATION THAT CAN ANSWER QUESTION " \
- f"THEN DIRECT ANSWER AND STOP INVOKING web_reader TOOL, OTHERWISE USE " \
- f"CURSOR={cursor+len(page_contents)} TO CONTINUE READING."
- return page_contents
- async def _arun(self, url: str) -> str:
- raise NotImplementedError
- def get_summary_chain(self) -> RefineDocumentsChain:
- initial_chain = LLMChain(
- model_config=self.model_config,
- prompt=refine_prompts.PROMPT,
- parameters=self.model_parameters
- )
- refine_chain = LLMChain(
- model_config=self.model_config,
- prompt=refine_prompts.REFINE_PROMPT,
- parameters=self.model_parameters
- )
- return RefineDocumentsChain(
- initial_llm_chain=initial_chain,
- refine_llm_chain=refine_chain,
- document_variable_name="text",
- initial_response_name="existing_answer",
- callbacks=self.callbacks
- )
- def page_result(text: str, cursor: int, max_length: int) -> str:
- """Page through `text` and return a substring of `max_length` characters starting from `cursor`."""
- return text[cursor: cursor + max_length]
- def get_url(url: str) -> str:
- """Fetch URL and return the contents as a string."""
- headers = {
- "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
- }
- supported_content_types = file_extractor.SUPPORT_URL_CONTENT_TYPES + ["text/html"]
- head_response = requests.head(url, headers=headers, allow_redirects=True, timeout=(5, 10))
- if head_response.status_code != 200:
- return "URL returned status code {}.".format(head_response.status_code)
- # check content-type
- main_content_type = head_response.headers.get('Content-Type').split(';')[0].strip()
- if main_content_type not in supported_content_types:
- return "Unsupported content-type [{}] of URL.".format(main_content_type)
- if main_content_type in file_extractor.SUPPORT_URL_CONTENT_TYPES:
- return FileExtractor.load_from_url(url, return_text=True)
- response = requests.get(url, headers=headers, allow_redirects=True, timeout=(5, 30))
- a = extract_using_readabilipy(response.text)
- if not a['plain_text'] or not a['plain_text'].strip():
- return get_url_from_newspaper3k(url)
- res = FULL_TEMPLATE.format(
- title=a['title'],
- authors=a['byline'],
- publish_date=a['date'],
- top_image="",
- text=a['plain_text'] if a['plain_text'] else "",
- )
- return res
- def get_url_from_newspaper3k(url: str) -> str:
- a = Article(url)
- a.download()
- a.parse()
- res = FULL_TEMPLATE.format(
- title=a.title,
- authors=a.authors,
- publish_date=a.publish_date,
- top_image=a.top_image,
- text=a.text,
- )
- return res
- def extract_using_readabilipy(html):
- with tempfile.NamedTemporaryFile(delete=False, mode='w+') as f_html:
- f_html.write(html)
- f_html.close()
- html_path = f_html.name
- # Call Mozilla's Readability.js Readability.parse() function via node, writing output to a temporary file
- article_json_path = html_path + ".json"
- jsdir = os.path.join(find_module_path('readabilipy'), 'javascript')
- with chdir(jsdir):
- subprocess.check_call(["node", "ExtractArticle.js", "-i", html_path, "-o", article_json_path])
- # Read output of call to Readability.parse() from JSON file and return as Python dictionary
- with open(article_json_path, "r", encoding="utf-8") as json_file:
- input_json = json.loads(json_file.read())
- # Deleting files after processing
- os.unlink(article_json_path)
- os.unlink(html_path)
- article_json = {
- "title": None,
- "byline": None,
- "date": None,
- "content": None,
- "plain_content": None,
- "plain_text": None
- }
- # Populate article fields from readability fields where present
- if input_json:
- if "title" in input_json and input_json["title"]:
- article_json["title"] = input_json["title"]
- if "byline" in input_json and input_json["byline"]:
- article_json["byline"] = input_json["byline"]
- if "date" in input_json and input_json["date"]:
- article_json["date"] = input_json["date"]
- if "content" in input_json and input_json["content"]:
- article_json["content"] = input_json["content"]
- article_json["plain_content"] = plain_content(article_json["content"], False, False)
- article_json["plain_text"] = extract_text_blocks_as_plain_text(article_json["plain_content"])
- if "textContent" in input_json and input_json["textContent"]:
- article_json["plain_text"] = input_json["textContent"]
- article_json["plain_text"] = re.sub(r'\n\s*\n', '\n', article_json["plain_text"])
- return article_json
- def find_module_path(module_name):
- for package_path in site.getsitepackages():
- potential_path = os.path.join(package_path, module_name)
- if os.path.exists(potential_path):
- return potential_path
- return None
- @contextmanager
- def chdir(path):
- """Change directory in context and return to original on exit"""
- # From https://stackoverflow.com/a/37996581, couldn't find a built-in
- original_path = os.getcwd()
- os.chdir(path)
- try:
- yield
- finally:
- os.chdir(original_path)
- def extract_text_blocks_as_plain_text(paragraph_html):
- # Load article as DOM
- soup = BeautifulSoup(paragraph_html, 'html.parser')
- # Select all lists
- list_elements = soup.find_all(['ul', 'ol'])
- # Prefix text in all list items with "* " and make lists paragraphs
- for list_element in list_elements:
- plain_items = "".join(list(filter(None, [plain_text_leaf_node(li)["text"] for li in list_element.find_all('li')])))
- list_element.string = plain_items
- list_element.name = "p"
- # Select all text blocks
- text_blocks = [s.parent for s in soup.find_all(string=True)]
- text_blocks = [plain_text_leaf_node(block) for block in text_blocks]
- # Drop empty paragraphs
- text_blocks = list(filter(lambda p: p["text"] is not None, text_blocks))
- return text_blocks
- def plain_text_leaf_node(element):
- # Extract all text, stripped of any child HTML elements and normalise it
- plain_text = normalise_text(element.get_text())
- if plain_text != "" and element.name == "li":
- plain_text = "* {}, ".format(plain_text)
- if plain_text == "":
- plain_text = None
- if "data-node-index" in element.attrs:
- plain = {"node_index": element["data-node-index"], "text": plain_text}
- else:
- plain = {"text": plain_text}
- return plain
- def plain_content(readability_content, content_digests, node_indexes):
- # Load article as DOM
- soup = BeautifulSoup(readability_content, 'html.parser')
- # Make all elements plain
- elements = plain_elements(soup.contents, content_digests, node_indexes)
- if node_indexes:
- # Add node index attributes to nodes
- elements = [add_node_indexes(element) for element in elements]
- # Replace article contents with plain elements
- soup.contents = elements
- return str(soup)
- def plain_elements(elements, content_digests, node_indexes):
- # Get plain content versions of all elements
- elements = [plain_element(element, content_digests, node_indexes)
- for element in elements]
- if content_digests:
- # Add content digest attribute to nodes
- elements = [add_content_digest(element) for element in elements]
- return elements
- def plain_element(element, content_digests, node_indexes):
- # For lists, we make each item plain text
- if is_leaf(element):
- # For leaf node elements, extract the text content, discarding any HTML tags
- # 1. Get element contents as text
- plain_text = element.get_text()
- # 2. Normalise the extracted text string to a canonical representation
- plain_text = normalise_text(plain_text)
- # 3. Update element content to be plain text
- element.string = plain_text
- elif is_text(element):
- if is_non_printing(element):
- # The simplified HTML may have come from Readability.js so might
- # have non-printing text (e.g. Comment or CData). In this case, we
- # keep the structure, but ensure that the string is empty.
- element = type(element)("")
- else:
- plain_text = element.string
- plain_text = normalise_text(plain_text)
- element = type(element)(plain_text)
- else:
- # If not a leaf node or leaf type call recursively on child nodes, replacing
- element.contents = plain_elements(element.contents, content_digests, node_indexes)
- return element
- def add_node_indexes(element, node_index="0"):
- # Can't add attributes to string types
- if is_text(element):
- return element
- # Add index to current element
- element["data-node-index"] = node_index
- # Add index to child elements
- for local_idx, child in enumerate(
- [c for c in element.contents if not is_text(c)], start=1):
- # Can't add attributes to leaf string types
- child_index = "{stem}.{local}".format(
- stem=node_index, local=local_idx)
- add_node_indexes(child, node_index=child_index)
- return element
- def normalise_text(text):
- """Normalise unicode and whitespace."""
- # Normalise unicode first to try and standardise whitespace characters as much as possible before normalising them
- text = strip_control_characters(text)
- text = normalise_unicode(text)
- text = normalise_whitespace(text)
- return text
- def strip_control_characters(text):
- """Strip out unicode control characters which might break the parsing."""
- # Unicode control characters
- # [Cc]: Other, Control [includes new lines]
- # [Cf]: Other, Format
- # [Cn]: Other, Not Assigned
- # [Co]: Other, Private Use
- # [Cs]: Other, Surrogate
- control_chars = set(['Cc', 'Cf', 'Cn', 'Co', 'Cs'])
- retained_chars = ['\t', '\n', '\r', '\f']
- # Remove non-printing control characters
- return "".join(["" if (unicodedata.category(char) in control_chars) and (char not in retained_chars) else char for char in text])
- def normalise_unicode(text):
- """Normalise unicode such that things that are visually equivalent map to the same unicode string where possible."""
- normal_form = "NFKC"
- text = unicodedata.normalize(normal_form, text)
- return text
- def normalise_whitespace(text):
- """Replace runs of whitespace characters with a single space as this is what happens when HTML text is displayed."""
- text = regex.sub(r"\s+", " ", text)
- # Remove leading and trailing whitespace
- text = text.strip()
- return text
- def is_leaf(element):
- return (element.name in ['p', 'li'])
- def is_text(element):
- return isinstance(element, NavigableString)
- def is_non_printing(element):
- return any(isinstance(element, _e) for _e in [Comment, CData])
- def add_content_digest(element):
- if not is_text(element):
- element["data-content-digest"] = content_digest(element)
- return element
- def content_digest(element):
- if is_text(element):
- # Hash
- trimmed_string = element.string.strip()
- if trimmed_string == "":
- digest = ""
- else:
- digest = hashlib.sha256(trimmed_string.encode('utf-8')).hexdigest()
- else:
- contents = element.contents
- num_contents = len(contents)
- if num_contents == 0:
- # No hash when no child elements exist
- digest = ""
- elif num_contents == 1:
- # If single child, use digest of child
- digest = content_digest(contents[0])
- else:
- # Build content digest from the "non-empty" digests of child nodes
- digest = hashlib.sha256()
- child_digests = list(
- filter(lambda x: x != "", [content_digest(content) for content in contents]))
- for child in child_digests:
- digest.update(child.encode('utf-8'))
- digest = digest.hexdigest()
- return digest
|