basic_app_runner.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363
  1. import logging
  2. from typing import Tuple, Optional
  3. from core.app_runner.app_runner import AppRunner
  4. from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
  5. from core.entities.application_entities import ApplicationGenerateEntity, ModelConfigEntity, \
  6. AppOrchestrationConfigEntity, InvokeFrom, ExternalDataVariableEntity, DatasetEntity
  7. from core.application_queue_manager import ApplicationQueueManager
  8. from core.features.annotation_reply import AnnotationReplyFeature
  9. from core.features.dataset_retrieval import DatasetRetrievalFeature
  10. from core.features.external_data_fetch import ExternalDataFetchFeature
  11. from core.features.hosting_moderation import HostingModerationFeature
  12. from core.features.moderation import ModerationFeature
  13. from core.memory.token_buffer_memory import TokenBufferMemory
  14. from core.model_manager import ModelInstance
  15. from core.model_runtime.entities.message_entities import PromptMessage
  16. from core.moderation.base import ModerationException
  17. from core.prompt.prompt_transform import AppMode
  18. from extensions.ext_database import db
  19. from models.model import Conversation, Message, App, MessageAnnotation
  20. logger = logging.getLogger(__name__)
  21. class BasicApplicationRunner(AppRunner):
  22. """
  23. Basic Application Runner
  24. """
  25. def run(self, application_generate_entity: ApplicationGenerateEntity,
  26. queue_manager: ApplicationQueueManager,
  27. conversation: Conversation,
  28. message: Message) -> None:
  29. """
  30. Run application
  31. :param application_generate_entity: application generate entity
  32. :param queue_manager: application queue manager
  33. :param conversation: conversation
  34. :param message: message
  35. :return:
  36. """
  37. app_record = db.session.query(App).filter(App.id == application_generate_entity.app_id).first()
  38. if not app_record:
  39. raise ValueError(f"App not found")
  40. app_orchestration_config = application_generate_entity.app_orchestration_config_entity
  41. inputs = application_generate_entity.inputs
  42. query = application_generate_entity.query
  43. files = application_generate_entity.files
  44. # Pre-calculate the number of tokens of the prompt messages,
  45. # and return the rest number of tokens by model context token size limit and max token size limit.
  46. # If the rest number of tokens is not enough, raise exception.
  47. # Include: prompt template, inputs, query(optional), files(optional)
  48. # Not Include: memory, external data, dataset context
  49. self.get_pre_calculate_rest_tokens(
  50. app_record=app_record,
  51. model_config=app_orchestration_config.model_config,
  52. prompt_template_entity=app_orchestration_config.prompt_template,
  53. inputs=inputs,
  54. files=files,
  55. query=query
  56. )
  57. memory = None
  58. if application_generate_entity.conversation_id:
  59. # get memory of conversation (read-only)
  60. model_instance = ModelInstance(
  61. provider_model_bundle=app_orchestration_config.model_config.provider_model_bundle,
  62. model=app_orchestration_config.model_config.model
  63. )
  64. memory = TokenBufferMemory(
  65. conversation=conversation,
  66. model_instance=model_instance
  67. )
  68. # organize all inputs and template to prompt messages
  69. # Include: prompt template, inputs, query(optional), files(optional)
  70. # memory(optional)
  71. prompt_messages, stop = self.originze_prompt_messages(
  72. app_record=app_record,
  73. model_config=app_orchestration_config.model_config,
  74. prompt_template_entity=app_orchestration_config.prompt_template,
  75. inputs=inputs,
  76. files=files,
  77. query=query,
  78. memory=memory
  79. )
  80. # moderation
  81. try:
  82. # process sensitive_word_avoidance
  83. _, inputs, query = self.moderation_for_inputs(
  84. app_id=app_record.id,
  85. tenant_id=application_generate_entity.tenant_id,
  86. app_orchestration_config_entity=app_orchestration_config,
  87. inputs=inputs,
  88. query=query,
  89. )
  90. except ModerationException as e:
  91. self.direct_output(
  92. queue_manager=queue_manager,
  93. app_orchestration_config=app_orchestration_config,
  94. prompt_messages=prompt_messages,
  95. text=str(e),
  96. stream=application_generate_entity.stream
  97. )
  98. return
  99. if query:
  100. # annotation reply
  101. annotation_reply = self.query_app_annotations_to_reply(
  102. app_record=app_record,
  103. message=message,
  104. query=query,
  105. user_id=application_generate_entity.user_id,
  106. invoke_from=application_generate_entity.invoke_from
  107. )
  108. if annotation_reply:
  109. queue_manager.publish_annotation_reply(
  110. message_annotation_id=annotation_reply.id
  111. )
  112. self.direct_output(
  113. queue_manager=queue_manager,
  114. app_orchestration_config=app_orchestration_config,
  115. prompt_messages=prompt_messages,
  116. text=annotation_reply.content,
  117. stream=application_generate_entity.stream
  118. )
  119. return
  120. # fill in variable inputs from external data tools if exists
  121. external_data_tools = app_orchestration_config.external_data_variables
  122. if external_data_tools:
  123. inputs = self.fill_in_inputs_from_external_data_tools(
  124. tenant_id=app_record.tenant_id,
  125. app_id=app_record.id,
  126. external_data_tools=external_data_tools,
  127. inputs=inputs,
  128. query=query
  129. )
  130. # get context from datasets
  131. context = None
  132. if app_orchestration_config.dataset:
  133. context = self.retrieve_dataset_context(
  134. tenant_id=app_record.tenant_id,
  135. app_record=app_record,
  136. queue_manager=queue_manager,
  137. model_config=app_orchestration_config.model_config,
  138. show_retrieve_source=app_orchestration_config.show_retrieve_source,
  139. dataset_config=app_orchestration_config.dataset,
  140. message=message,
  141. inputs=inputs,
  142. query=query,
  143. user_id=application_generate_entity.user_id,
  144. invoke_from=application_generate_entity.invoke_from,
  145. memory=memory
  146. )
  147. # reorganize all inputs and template to prompt messages
  148. # Include: prompt template, inputs, query(optional), files(optional)
  149. # memory(optional), external data, dataset context(optional)
  150. prompt_messages, stop = self.originze_prompt_messages(
  151. app_record=app_record,
  152. model_config=app_orchestration_config.model_config,
  153. prompt_template_entity=app_orchestration_config.prompt_template,
  154. inputs=inputs,
  155. files=files,
  156. query=query,
  157. context=context,
  158. memory=memory
  159. )
  160. # check hosting moderation
  161. hosting_moderation_result = self.check_hosting_moderation(
  162. application_generate_entity=application_generate_entity,
  163. queue_manager=queue_manager,
  164. prompt_messages=prompt_messages
  165. )
  166. if hosting_moderation_result:
  167. return
  168. # Re-calculate the max tokens if sum(prompt_token + max_tokens) over model token limit
  169. self.recale_llm_max_tokens(
  170. model_config=app_orchestration_config.model_config,
  171. prompt_messages=prompt_messages
  172. )
  173. # Invoke model
  174. model_instance = ModelInstance(
  175. provider_model_bundle=app_orchestration_config.model_config.provider_model_bundle,
  176. model=app_orchestration_config.model_config.model
  177. )
  178. invoke_result = model_instance.invoke_llm(
  179. prompt_messages=prompt_messages,
  180. model_parameters=app_orchestration_config.model_config.parameters,
  181. stop=stop,
  182. stream=application_generate_entity.stream,
  183. user=application_generate_entity.user_id,
  184. )
  185. # handle invoke result
  186. self._handle_invoke_result(
  187. invoke_result=invoke_result,
  188. queue_manager=queue_manager,
  189. stream=application_generate_entity.stream
  190. )
  191. def moderation_for_inputs(self, app_id: str,
  192. tenant_id: str,
  193. app_orchestration_config_entity: AppOrchestrationConfigEntity,
  194. inputs: dict,
  195. query: str) -> Tuple[bool, dict, str]:
  196. """
  197. Process sensitive_word_avoidance.
  198. :param app_id: app id
  199. :param tenant_id: tenant id
  200. :param app_orchestration_config_entity: app orchestration config entity
  201. :param inputs: inputs
  202. :param query: query
  203. :return:
  204. """
  205. moderation_feature = ModerationFeature()
  206. return moderation_feature.check(
  207. app_id=app_id,
  208. tenant_id=tenant_id,
  209. app_orchestration_config_entity=app_orchestration_config_entity,
  210. inputs=inputs,
  211. query=query,
  212. )
  213. def query_app_annotations_to_reply(self, app_record: App,
  214. message: Message,
  215. query: str,
  216. user_id: str,
  217. invoke_from: InvokeFrom) -> Optional[MessageAnnotation]:
  218. """
  219. Query app annotations to reply
  220. :param app_record: app record
  221. :param message: message
  222. :param query: query
  223. :param user_id: user id
  224. :param invoke_from: invoke from
  225. :return:
  226. """
  227. annotation_reply_feature = AnnotationReplyFeature()
  228. return annotation_reply_feature.query(
  229. app_record=app_record,
  230. message=message,
  231. query=query,
  232. user_id=user_id,
  233. invoke_from=invoke_from
  234. )
  235. def fill_in_inputs_from_external_data_tools(self, tenant_id: str,
  236. app_id: str,
  237. external_data_tools: list[ExternalDataVariableEntity],
  238. inputs: dict,
  239. query: str) -> dict:
  240. """
  241. Fill in variable inputs from external data tools if exists.
  242. :param tenant_id: workspace id
  243. :param app_id: app id
  244. :param external_data_tools: external data tools configs
  245. :param inputs: the inputs
  246. :param query: the query
  247. :return: the filled inputs
  248. """
  249. external_data_fetch_feature = ExternalDataFetchFeature()
  250. return external_data_fetch_feature.fetch(
  251. tenant_id=tenant_id,
  252. app_id=app_id,
  253. external_data_tools=external_data_tools,
  254. inputs=inputs,
  255. query=query
  256. )
  257. def retrieve_dataset_context(self, tenant_id: str,
  258. app_record: App,
  259. queue_manager: ApplicationQueueManager,
  260. model_config: ModelConfigEntity,
  261. dataset_config: DatasetEntity,
  262. show_retrieve_source: bool,
  263. message: Message,
  264. inputs: dict,
  265. query: str,
  266. user_id: str,
  267. invoke_from: InvokeFrom,
  268. memory: Optional[TokenBufferMemory] = None) -> Optional[str]:
  269. """
  270. Retrieve dataset context
  271. :param tenant_id: tenant id
  272. :param app_record: app record
  273. :param queue_manager: queue manager
  274. :param model_config: model config
  275. :param dataset_config: dataset config
  276. :param show_retrieve_source: show retrieve source
  277. :param message: message
  278. :param inputs: inputs
  279. :param query: query
  280. :param user_id: user id
  281. :param invoke_from: invoke from
  282. :param memory: memory
  283. :return:
  284. """
  285. hit_callback = DatasetIndexToolCallbackHandler(
  286. queue_manager,
  287. app_record.id,
  288. message.id,
  289. user_id,
  290. invoke_from
  291. )
  292. if (app_record.mode == AppMode.COMPLETION.value and dataset_config
  293. and dataset_config.retrieve_config.query_variable):
  294. query = inputs.get(dataset_config.retrieve_config.query_variable, "")
  295. dataset_retrieval = DatasetRetrievalFeature()
  296. return dataset_retrieval.retrieve(
  297. tenant_id=tenant_id,
  298. model_config=model_config,
  299. config=dataset_config,
  300. query=query,
  301. invoke_from=invoke_from,
  302. show_retrieve_source=show_retrieve_source,
  303. hit_callback=hit_callback,
  304. memory=memory
  305. )
  306. def check_hosting_moderation(self, application_generate_entity: ApplicationGenerateEntity,
  307. queue_manager: ApplicationQueueManager,
  308. prompt_messages: list[PromptMessage]) -> bool:
  309. """
  310. Check hosting moderation
  311. :param application_generate_entity: application generate entity
  312. :param queue_manager: queue manager
  313. :param prompt_messages: prompt messages
  314. :return:
  315. """
  316. hosting_moderation_feature = HostingModerationFeature()
  317. moderation_result = hosting_moderation_feature.check(
  318. application_generate_entity=application_generate_entity,
  319. prompt_messages=prompt_messages
  320. )
  321. if moderation_result:
  322. self.direct_output(
  323. queue_manager=queue_manager,
  324. app_orchestration_config=application_generate_entity.app_orchestration_config_entity,
  325. prompt_messages=prompt_messages,
  326. text="I apologize for any confusion, " \
  327. "but I'm an AI assistant to be helpful, harmless, and honest.",
  328. stream=application_generate_entity.stream
  329. )
  330. return moderation_result