| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 | 
							- import datetime
 
- import logging
 
- import time
 
- import click
 
- from celery import shared_task
 
- from configs import dify_config
 
- from core.indexing_runner import DocumentIsPausedError, IndexingRunner
 
- from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
 
- from extensions.ext_database import db
 
- from models.dataset import Dataset, Document, DocumentSegment
 
- from services.feature_service import FeatureService
 
- @shared_task(queue="dataset")
 
- def duplicate_document_indexing_task(dataset_id: str, document_ids: list):
 
-     """
 
-     Async process document
 
-     :param dataset_id:
 
-     :param document_ids:
 
-     Usage: duplicate_document_indexing_task.delay(dataset_id, document_id)
 
-     """
 
-     documents = []
 
-     start_at = time.perf_counter()
 
-     dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 
-     # check document limit
 
-     features = FeatureService.get_features(dataset.tenant_id)
 
-     try:
 
-         if features.billing.enabled:
 
-             vector_space = features.vector_space
 
-             count = len(document_ids)
 
-             batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
 
-             if count > batch_upload_limit:
 
-                 raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
 
-             if 0 < vector_space.limit <= vector_space.size:
 
-                 raise ValueError(
 
-                     "Your total number of documents plus the number of uploads have over the limit of "
 
-                     "your subscription."
 
-                 )
 
-     except Exception as e:
 
-         for document_id in document_ids:
 
-             document = (
 
-                 db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
 
-             )
 
-             if document:
 
-                 document.indexing_status = "error"
 
-                 document.error = str(e)
 
-                 document.stopped_at = datetime.datetime.utcnow()
 
-                 db.session.add(document)
 
-         db.session.commit()
 
-         return
 
-     for document_id in document_ids:
 
-         logging.info(click.style("Start process document: {}".format(document_id), fg="green"))
 
-         document = (
 
-             db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
 
-         )
 
-         if document:
 
-             # clean old data
 
-             index_type = document.doc_form
 
-             index_processor = IndexProcessorFactory(index_type).init_index_processor()
 
-             segments = db.session.query(DocumentSegment).filter(DocumentSegment.document_id == document_id).all()
 
-             if segments:
 
-                 index_node_ids = [segment.index_node_id for segment in segments]
 
-                 # delete from vector index
 
-                 index_processor.clean(dataset, index_node_ids)
 
-                 for segment in segments:
 
-                     db.session.delete(segment)
 
-                 db.session.commit()
 
-             document.indexing_status = "parsing"
 
-             document.processing_started_at = datetime.datetime.utcnow()
 
-             documents.append(document)
 
-             db.session.add(document)
 
-     db.session.commit()
 
-     try:
 
-         indexing_runner = IndexingRunner()
 
-         indexing_runner.run(documents)
 
-         end_at = time.perf_counter()
 
-         logging.info(click.style("Processed dataset: {} latency: {}".format(dataset_id, end_at - start_at), fg="green"))
 
-     except DocumentIsPausedError as ex:
 
-         logging.info(click.style(str(ex), fg="yellow"))
 
-     except Exception:
 
-         pass
 
 
  |