| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 | 
							- import datetime
 
- import logging
 
- import time
 
- import uuid
 
- import click
 
- from celery import shared_task
 
- from sqlalchemy import func
 
- from core.indexing_runner import IndexingRunner
 
- from core.model_manager import ModelManager
 
- from core.model_runtime.entities.model_entities import ModelType
 
- from extensions.ext_database import db
 
- from extensions.ext_redis import redis_client
 
- from libs import helper
 
- from models.dataset import Dataset, Document, DocumentSegment
 
- @shared_task(queue="dataset")
 
- def batch_create_segment_to_index_task(
 
-     job_id: str, content: list, dataset_id: str, document_id: str, tenant_id: str, user_id: str
 
- ):
 
-     """
 
-     Async batch create segment to index
 
-     :param job_id:
 
-     :param content:
 
-     :param dataset_id:
 
-     :param document_id:
 
-     :param tenant_id:
 
-     :param user_id:
 
-     Usage: batch_create_segment_to_index_task.delay(segment_id)
 
-     """
 
-     logging.info(click.style("Start batch create segment jobId: {}".format(job_id), fg="green"))
 
-     start_at = time.perf_counter()
 
-     indexing_cache_key = "segment_batch_import_{}".format(job_id)
 
-     try:
 
-         dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 
-         if not dataset:
 
-             raise ValueError("Dataset not exist.")
 
-         dataset_document = db.session.query(Document).filter(Document.id == document_id).first()
 
-         if not dataset_document:
 
-             raise ValueError("Document not exist.")
 
-         if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != "completed":
 
-             raise ValueError("Document is not available.")
 
-         document_segments = []
 
-         embedding_model = None
 
-         if dataset.indexing_technique == "high_quality":
 
-             model_manager = ModelManager()
 
-             embedding_model = model_manager.get_model_instance(
 
-                 tenant_id=dataset.tenant_id,
 
-                 provider=dataset.embedding_model_provider,
 
-                 model_type=ModelType.TEXT_EMBEDDING,
 
-                 model=dataset.embedding_model,
 
-             )
 
-         for segment in content:
 
-             content = segment["content"]
 
-             doc_id = str(uuid.uuid4())
 
-             segment_hash = helper.generate_text_hash(content)
 
-             # calc embedding use tokens
 
-             tokens = embedding_model.get_text_embedding_num_tokens(texts=[content]) if embedding_model else 0
 
-             max_position = (
 
-                 db.session.query(func.max(DocumentSegment.position))
 
-                 .filter(DocumentSegment.document_id == dataset_document.id)
 
-                 .scalar()
 
-             )
 
-             segment_document = DocumentSegment(
 
-                 tenant_id=tenant_id,
 
-                 dataset_id=dataset_id,
 
-                 document_id=document_id,
 
-                 index_node_id=doc_id,
 
-                 index_node_hash=segment_hash,
 
-                 position=max_position + 1 if max_position else 1,
 
-                 content=content,
 
-                 word_count=len(content),
 
-                 tokens=tokens,
 
-                 created_by=user_id,
 
-                 indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
 
-                 status="completed",
 
-                 completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
 
-             )
 
-             if dataset_document.doc_form == "qa_model":
 
-                 segment_document.answer = segment["answer"]
 
-             db.session.add(segment_document)
 
-             document_segments.append(segment_document)
 
-         # add index to db
 
-         indexing_runner = IndexingRunner()
 
-         indexing_runner.batch_add_segments(document_segments, dataset)
 
-         db.session.commit()
 
-         redis_client.setex(indexing_cache_key, 600, "completed")
 
-         end_at = time.perf_counter()
 
-         logging.info(
 
-             click.style("Segment batch created job: {} latency: {}".format(job_id, end_at - start_at), fg="green")
 
-         )
 
-     except Exception as e:
 
-         logging.exception("Segments batch created index failed:{}".format(str(e)))
 
-         redis_client.setex(indexing_cache_key, 600, "error")
 
 
  |