hit_testing_service.py 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206
  1. import logging
  2. import threading
  3. import time
  4. from typing import List
  5. import numpy as np
  6. from core.embedding.cached_embedding import CacheEmbedding
  7. from core.model_manager import ModelManager
  8. from core.model_runtime.entities.model_entities import ModelType
  9. from core.rerank.rerank import RerankRunner
  10. from extensions.ext_database import db
  11. from flask import current_app
  12. from langchain.embeddings.base import Embeddings
  13. from langchain.schema import Document
  14. from models.account import Account
  15. from models.dataset import Dataset, DatasetQuery, DocumentSegment
  16. from services.retrieval_service import RetrievalService
  17. from sklearn.manifold import TSNE
  18. default_retrieval_model = {
  19. 'search_method': 'semantic_search',
  20. 'reranking_enable': False,
  21. 'reranking_model': {
  22. 'reranking_provider_name': '',
  23. 'reranking_model_name': ''
  24. },
  25. 'top_k': 2,
  26. 'score_threshold_enabled': False
  27. }
  28. class HitTestingService:
  29. @classmethod
  30. def retrieve(cls, dataset: Dataset, query: str, account: Account, retrieval_model: dict, limit: int = 10) -> dict:
  31. if dataset.available_document_count == 0 or dataset.available_segment_count == 0:
  32. return {
  33. "query": {
  34. "content": query,
  35. "tsne_position": {'x': 0, 'y': 0},
  36. },
  37. "records": []
  38. }
  39. start = time.perf_counter()
  40. # get retrieval model , if the model is not setting , using default
  41. if not retrieval_model:
  42. retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
  43. # get embedding model
  44. model_manager = ModelManager()
  45. embedding_model = model_manager.get_model_instance(
  46. tenant_id=dataset.tenant_id,
  47. model_type=ModelType.TEXT_EMBEDDING,
  48. provider=dataset.embedding_model_provider,
  49. model=dataset.embedding_model
  50. )
  51. embeddings = CacheEmbedding(embedding_model)
  52. all_documents = []
  53. threads = []
  54. # retrieval_model source with semantic
  55. if retrieval_model['search_method'] == 'semantic_search' or retrieval_model['search_method'] == 'hybrid_search':
  56. embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
  57. 'flask_app': current_app._get_current_object(),
  58. 'dataset_id': str(dataset.id),
  59. 'query': query,
  60. 'top_k': retrieval_model['top_k'],
  61. 'score_threshold': retrieval_model['score_threshold'] if retrieval_model['score_threshold_enabled'] else None,
  62. 'reranking_model': retrieval_model['reranking_model'] if retrieval_model['reranking_enable'] else None,
  63. 'all_documents': all_documents,
  64. 'search_method': retrieval_model['search_method'],
  65. 'embeddings': embeddings
  66. })
  67. threads.append(embedding_thread)
  68. embedding_thread.start()
  69. # retrieval source with full text
  70. if retrieval_model['search_method'] == 'full_text_search' or retrieval_model['search_method'] == 'hybrid_search':
  71. full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
  72. 'flask_app': current_app._get_current_object(),
  73. 'dataset_id': str(dataset.id),
  74. 'query': query,
  75. 'search_method': retrieval_model['search_method'],
  76. 'embeddings': embeddings,
  77. 'score_threshold': retrieval_model['score_threshold'] if retrieval_model['score_threshold_enabled'] else None,
  78. 'top_k': retrieval_model['top_k'],
  79. 'reranking_model': retrieval_model['reranking_model'] if retrieval_model['reranking_enable'] else None,
  80. 'all_documents': all_documents
  81. })
  82. threads.append(full_text_index_thread)
  83. full_text_index_thread.start()
  84. for thread in threads:
  85. thread.join()
  86. if retrieval_model['search_method'] == 'hybrid_search':
  87. model_manager = ModelManager()
  88. rerank_model_instance = model_manager.get_model_instance(
  89. tenant_id=dataset.tenant_id,
  90. provider=retrieval_model['reranking_model']['reranking_provider_name'],
  91. model_type=ModelType.RERANK,
  92. model=retrieval_model['reranking_model']['reranking_model_name']
  93. )
  94. rerank_runner = RerankRunner(rerank_model_instance)
  95. all_documents = rerank_runner.run(
  96. query=query,
  97. documents=all_documents,
  98. score_threshold=retrieval_model['score_threshold'] if retrieval_model['score_threshold_enabled'] else None,
  99. top_n=retrieval_model['top_k'],
  100. user=f"account-{account.id}"
  101. )
  102. end = time.perf_counter()
  103. logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")
  104. dataset_query = DatasetQuery(
  105. dataset_id=dataset.id,
  106. content=query,
  107. source='hit_testing',
  108. created_by_role='account',
  109. created_by=account.id
  110. )
  111. db.session.add(dataset_query)
  112. db.session.commit()
  113. return cls.compact_retrieve_response(dataset, embeddings, query, all_documents)
  114. @classmethod
  115. def compact_retrieve_response(cls, dataset: Dataset, embeddings: Embeddings, query: str, documents: List[Document]):
  116. text_embeddings = [
  117. embeddings.embed_query(query)
  118. ]
  119. text_embeddings.extend(embeddings.embed_documents([document.page_content for document in documents]))
  120. tsne_position_data = cls.get_tsne_positions_from_embeddings(text_embeddings)
  121. query_position = tsne_position_data.pop(0)
  122. i = 0
  123. records = []
  124. for document in documents:
  125. index_node_id = document.metadata['doc_id']
  126. segment = db.session.query(DocumentSegment).filter(
  127. DocumentSegment.dataset_id == dataset.id,
  128. DocumentSegment.enabled == True,
  129. DocumentSegment.status == 'completed',
  130. DocumentSegment.index_node_id == index_node_id
  131. ).first()
  132. if not segment:
  133. i += 1
  134. continue
  135. record = {
  136. "segment": segment,
  137. "score": document.metadata.get('score', None),
  138. "tsne_position": tsne_position_data[i]
  139. }
  140. records.append(record)
  141. i += 1
  142. return {
  143. "query": {
  144. "content": query,
  145. "tsne_position": query_position,
  146. },
  147. "records": records
  148. }
  149. @classmethod
  150. def get_tsne_positions_from_embeddings(cls, embeddings: list):
  151. embedding_length = len(embeddings)
  152. if embedding_length <= 1:
  153. return [{'x': 0, 'y': 0}]
  154. concatenate_data = np.array(embeddings).reshape(embedding_length, -1)
  155. # concatenate_data = np.concatenate(embeddings)
  156. perplexity = embedding_length / 2 + 1
  157. if perplexity >= embedding_length:
  158. perplexity = max(embedding_length - 1, 1)
  159. tsne = TSNE(n_components=2, perplexity=perplexity, early_exaggeration=12.0)
  160. data_tsne = tsne.fit_transform(concatenate_data)
  161. tsne_position_data = []
  162. for i in range(len(data_tsne)):
  163. tsne_position_data.append({'x': float(data_tsne[i][0]), 'y': float(data_tsne[i][1])})
  164. return tsne_position_data
  165. @classmethod
  166. def hit_testing_args_check(cls, args):
  167. query = args['query']
  168. if not query or len(query) > 250:
  169. raise ValueError('Query is required and cannot exceed 250 characters')