dataset_service.py 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236
  1. import datetime
  2. import json
  3. import logging
  4. import random
  5. import time
  6. import uuid
  7. from typing import List, Optional, cast
  8. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  9. from core.index.index import IndexBuilder
  10. from core.model_manager import ModelManager
  11. from core.model_runtime.entities.model_entities import ModelType
  12. from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
  13. from events.dataset_event import dataset_was_deleted
  14. from events.document_event import document_was_deleted
  15. from extensions.ext_database import db
  16. from extensions.ext_redis import redis_client
  17. from flask import current_app
  18. from flask_login import current_user
  19. from libs import helper
  20. from models.account import Account
  21. from models.dataset import (AppDatasetJoin, Dataset, DatasetCollectionBinding, DatasetProcessRule, DatasetQuery,
  22. Document, DocumentSegment)
  23. from models.model import UploadFile
  24. from models.source import DataSourceBinding
  25. from services.errors.account import NoPermissionError
  26. from services.errors.dataset import DatasetNameDuplicateError
  27. from services.errors.document import DocumentIndexingError
  28. from services.errors.file import FileNotExistsError
  29. from services.vector_service import VectorService
  30. from sqlalchemy import func
  31. from tasks.clean_notion_document_task import clean_notion_document_task
  32. from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
  33. from tasks.delete_segment_from_index_task import delete_segment_from_index_task
  34. from tasks.document_indexing_task import document_indexing_task
  35. from tasks.document_indexing_update_task import document_indexing_update_task
  36. from tasks.recover_document_indexing_task import recover_document_indexing_task
  37. class DatasetService:
  38. @staticmethod
  39. def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None):
  40. if user:
  41. permission_filter = db.or_(Dataset.created_by == user.id,
  42. Dataset.permission == 'all_team_members')
  43. else:
  44. permission_filter = Dataset.permission == 'all_team_members'
  45. datasets = Dataset.query.filter(
  46. db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
  47. .order_by(Dataset.created_at.desc()) \
  48. .paginate(
  49. page=page,
  50. per_page=per_page,
  51. max_per_page=100,
  52. error_out=False
  53. )
  54. return datasets.items, datasets.total
  55. @staticmethod
  56. def get_process_rules(dataset_id):
  57. # get the latest process rule
  58. dataset_process_rule = db.session.query(DatasetProcessRule). \
  59. filter(DatasetProcessRule.dataset_id == dataset_id). \
  60. order_by(DatasetProcessRule.created_at.desc()). \
  61. limit(1). \
  62. one_or_none()
  63. if dataset_process_rule:
  64. mode = dataset_process_rule.mode
  65. rules = dataset_process_rule.rules_dict
  66. else:
  67. mode = DocumentService.DEFAULT_RULES['mode']
  68. rules = DocumentService.DEFAULT_RULES['rules']
  69. return {
  70. 'mode': mode,
  71. 'rules': rules
  72. }
  73. @staticmethod
  74. def get_datasets_by_ids(ids, tenant_id):
  75. datasets = Dataset.query.filter(Dataset.id.in_(ids),
  76. Dataset.tenant_id == tenant_id).paginate(
  77. page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
  78. return datasets.items, datasets.total
  79. @staticmethod
  80. def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
  81. # check if dataset name already exists
  82. if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
  83. raise DatasetNameDuplicateError(
  84. f'Dataset with name {name} already exists.')
  85. embedding_model = None
  86. if indexing_technique == 'high_quality':
  87. model_manager = ModelManager()
  88. embedding_model = model_manager.get_default_model_instance(
  89. tenant_id=tenant_id,
  90. model_type=ModelType.TEXT_EMBEDDING
  91. )
  92. dataset = Dataset(name=name, indexing_technique=indexing_technique)
  93. # dataset = Dataset(name=name, provider=provider, config=config)
  94. dataset.created_by = account.id
  95. dataset.updated_by = account.id
  96. dataset.tenant_id = tenant_id
  97. dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
  98. dataset.embedding_model = embedding_model.model if embedding_model else None
  99. db.session.add(dataset)
  100. db.session.commit()
  101. return dataset
  102. @staticmethod
  103. def get_dataset(dataset_id):
  104. dataset = Dataset.query.filter_by(
  105. id=dataset_id
  106. ).first()
  107. if dataset is None:
  108. return None
  109. else:
  110. return dataset
  111. @staticmethod
  112. def check_dataset_model_setting(dataset):
  113. if dataset.indexing_technique == 'high_quality':
  114. try:
  115. model_manager = ModelManager()
  116. model_manager.get_model_instance(
  117. tenant_id=dataset.tenant_id,
  118. provider=dataset.embedding_model_provider,
  119. model_type=ModelType.TEXT_EMBEDDING,
  120. model=dataset.embedding_model
  121. )
  122. except LLMBadRequestError:
  123. raise ValueError(
  124. f"No Embedding Model available. Please configure a valid provider "
  125. f"in the Settings -> Model Provider.")
  126. except ProviderTokenNotInitError as ex:
  127. raise ValueError(f"The dataset in unavailable, due to: "
  128. f"{ex.description}")
  129. @staticmethod
  130. def update_dataset(dataset_id, data, user):
  131. filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
  132. dataset = DatasetService.get_dataset(dataset_id)
  133. DatasetService.check_dataset_permission(dataset, user)
  134. action = None
  135. if dataset.indexing_technique != data['indexing_technique']:
  136. # if update indexing_technique
  137. if data['indexing_technique'] == 'economy':
  138. action = 'remove'
  139. filtered_data['embedding_model'] = None
  140. filtered_data['embedding_model_provider'] = None
  141. filtered_data['collection_binding_id'] = None
  142. elif data['indexing_technique'] == 'high_quality':
  143. action = 'add'
  144. # get embedding model setting
  145. try:
  146. model_manager = ModelManager()
  147. embedding_model = model_manager.get_default_model_instance(
  148. tenant_id=current_user.current_tenant_id,
  149. model_type=ModelType.TEXT_EMBEDDING
  150. )
  151. filtered_data['embedding_model'] = embedding_model.model
  152. filtered_data['embedding_model_provider'] = embedding_model.provider
  153. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  154. embedding_model.provider,
  155. embedding_model.model
  156. )
  157. filtered_data['collection_binding_id'] = dataset_collection_binding.id
  158. except LLMBadRequestError:
  159. raise ValueError(
  160. f"No Embedding Model available. Please configure a valid provider "
  161. f"in the Settings -> Model Provider.")
  162. except ProviderTokenNotInitError as ex:
  163. raise ValueError(ex.description)
  164. filtered_data['updated_by'] = user.id
  165. filtered_data['updated_at'] = datetime.datetime.now()
  166. # update Retrieval model
  167. filtered_data['retrieval_model'] = data['retrieval_model']
  168. dataset.query.filter_by(id=dataset_id).update(filtered_data)
  169. db.session.commit()
  170. if action:
  171. deal_dataset_vector_index_task.delay(dataset_id, action)
  172. return dataset
  173. @staticmethod
  174. def delete_dataset(dataset_id, user):
  175. # todo: cannot delete dataset if it is being processed
  176. dataset = DatasetService.get_dataset(dataset_id)
  177. if dataset is None:
  178. return False
  179. DatasetService.check_dataset_permission(dataset, user)
  180. dataset_was_deleted.send(dataset)
  181. db.session.delete(dataset)
  182. db.session.commit()
  183. return True
  184. @staticmethod
  185. def check_dataset_permission(dataset, user):
  186. if dataset.tenant_id != user.current_tenant_id:
  187. logging.debug(
  188. f'User {user.id} does not have permission to access dataset {dataset.id}')
  189. raise NoPermissionError(
  190. 'You do not have permission to access this dataset.')
  191. if dataset.permission == 'only_me' and dataset.created_by != user.id:
  192. logging.debug(
  193. f'User {user.id} does not have permission to access dataset {dataset.id}')
  194. raise NoPermissionError(
  195. 'You do not have permission to access this dataset.')
  196. @staticmethod
  197. def get_dataset_queries(dataset_id: str, page: int, per_page: int):
  198. dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
  199. .order_by(db.desc(DatasetQuery.created_at)) \
  200. .paginate(
  201. page=page, per_page=per_page, max_per_page=100, error_out=False
  202. )
  203. return dataset_queries.items, dataset_queries.total
  204. @staticmethod
  205. def get_related_apps(dataset_id: str):
  206. return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
  207. .order_by(db.desc(AppDatasetJoin.created_at)).all()
  208. class DocumentService:
  209. DEFAULT_RULES = {
  210. 'mode': 'custom',
  211. 'rules': {
  212. 'pre_processing_rules': [
  213. {'id': 'remove_extra_spaces', 'enabled': True},
  214. {'id': 'remove_urls_emails', 'enabled': False}
  215. ],
  216. 'segmentation': {
  217. 'delimiter': '\n',
  218. 'max_tokens': 500,
  219. 'chunk_overlap': 50
  220. }
  221. }
  222. }
  223. DOCUMENT_METADATA_SCHEMA = {
  224. "book": {
  225. "title": str,
  226. "language": str,
  227. "author": str,
  228. "publisher": str,
  229. "publication_date": str,
  230. "isbn": str,
  231. "category": str,
  232. },
  233. "web_page": {
  234. "title": str,
  235. "url": str,
  236. "language": str,
  237. "publish_date": str,
  238. "author/publisher": str,
  239. "topic/keywords": str,
  240. "description": str,
  241. },
  242. "paper": {
  243. "title": str,
  244. "language": str,
  245. "author": str,
  246. "publish_date": str,
  247. "journal/conference_name": str,
  248. "volume/issue/page_numbers": str,
  249. "doi": str,
  250. "topic/keywords": str,
  251. "abstract": str,
  252. },
  253. "social_media_post": {
  254. "platform": str,
  255. "author/username": str,
  256. "publish_date": str,
  257. "post_url": str,
  258. "topic/tags": str,
  259. },
  260. "wikipedia_entry": {
  261. "title": str,
  262. "language": str,
  263. "web_page_url": str,
  264. "last_edit_date": str,
  265. "editor/contributor": str,
  266. "summary/introduction": str,
  267. },
  268. "personal_document": {
  269. "title": str,
  270. "author": str,
  271. "creation_date": str,
  272. "last_modified_date": str,
  273. "document_type": str,
  274. "tags/category": str,
  275. },
  276. "business_document": {
  277. "title": str,
  278. "author": str,
  279. "creation_date": str,
  280. "last_modified_date": str,
  281. "document_type": str,
  282. "department/team": str,
  283. },
  284. "im_chat_log": {
  285. "chat_platform": str,
  286. "chat_participants/group_name": str,
  287. "start_date": str,
  288. "end_date": str,
  289. "summary": str,
  290. },
  291. "synced_from_notion": {
  292. "title": str,
  293. "language": str,
  294. "author/creator": str,
  295. "creation_date": str,
  296. "last_modified_date": str,
  297. "notion_page_link": str,
  298. "category/tags": str,
  299. "description": str,
  300. },
  301. "synced_from_github": {
  302. "repository_name": str,
  303. "repository_description": str,
  304. "repository_owner/organization": str,
  305. "code_filename": str,
  306. "code_file_path": str,
  307. "programming_language": str,
  308. "github_link": str,
  309. "open_source_license": str,
  310. "commit_date": str,
  311. "commit_author": str,
  312. },
  313. "others": dict
  314. }
  315. @staticmethod
  316. def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
  317. document = db.session.query(Document).filter(
  318. Document.id == document_id,
  319. Document.dataset_id == dataset_id
  320. ).first()
  321. return document
  322. @staticmethod
  323. def get_document_by_id(document_id: str) -> Optional[Document]:
  324. document = db.session.query(Document).filter(
  325. Document.id == document_id
  326. ).first()
  327. return document
  328. @staticmethod
  329. def get_document_by_dataset_id(dataset_id: str) -> List[Document]:
  330. documents = db.session.query(Document).filter(
  331. Document.dataset_id == dataset_id,
  332. Document.enabled == True
  333. ).all()
  334. return documents
  335. @staticmethod
  336. def get_batch_documents(dataset_id: str, batch: str) -> List[Document]:
  337. documents = db.session.query(Document).filter(
  338. Document.batch == batch,
  339. Document.dataset_id == dataset_id,
  340. Document.tenant_id == current_user.current_tenant_id
  341. ).all()
  342. return documents
  343. @staticmethod
  344. def get_document_file_detail(file_id: str):
  345. file_detail = db.session.query(UploadFile). \
  346. filter(UploadFile.id == file_id). \
  347. one_or_none()
  348. return file_detail
  349. @staticmethod
  350. def check_archived(document):
  351. if document.archived:
  352. return True
  353. else:
  354. return False
  355. @staticmethod
  356. def delete_document(document):
  357. # trigger document_was_deleted signal
  358. document_was_deleted.send(document.id, dataset_id=document.dataset_id)
  359. db.session.delete(document)
  360. db.session.commit()
  361. @staticmethod
  362. def pause_document(document):
  363. if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
  364. raise DocumentIndexingError()
  365. # update document to be paused
  366. document.is_paused = True
  367. document.paused_by = current_user.id
  368. document.paused_at = datetime.datetime.utcnow()
  369. db.session.add(document)
  370. db.session.commit()
  371. # set document paused flag
  372. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  373. redis_client.setnx(indexing_cache_key, "True")
  374. @staticmethod
  375. def recover_document(document):
  376. if not document.is_paused:
  377. raise DocumentIndexingError()
  378. # update document to be recover
  379. document.is_paused = False
  380. document.paused_by = None
  381. document.paused_at = None
  382. db.session.add(document)
  383. db.session.commit()
  384. # delete paused flag
  385. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  386. redis_client.delete(indexing_cache_key)
  387. # trigger async task
  388. recover_document_indexing_task.delay(document.dataset_id, document.id)
  389. @staticmethod
  390. def get_documents_position(dataset_id):
  391. document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
  392. if document:
  393. return document.position + 1
  394. else:
  395. return 1
  396. @staticmethod
  397. def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
  398. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  399. created_from: str = 'web'):
  400. # check document limit
  401. if current_app.config['EDITION'] == 'CLOUD':
  402. if 'original_document_id' not in document_data or not document_data['original_document_id']:
  403. count = 0
  404. if document_data["data_source"]["type"] == "upload_file":
  405. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  406. count = len(upload_file_list)
  407. elif document_data["data_source"]["type"] == "notion_import":
  408. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  409. for notion_info in notion_info_list:
  410. count = count + len(notion_info['pages'])
  411. # if dataset is empty, update dataset data_source_type
  412. if not dataset.data_source_type:
  413. dataset.data_source_type = document_data["data_source"]["type"]
  414. if not dataset.indexing_technique:
  415. if 'indexing_technique' not in document_data \
  416. or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
  417. raise ValueError("Indexing technique is required")
  418. dataset.indexing_technique = document_data["indexing_technique"]
  419. if document_data["indexing_technique"] == 'high_quality':
  420. model_manager = ModelManager()
  421. embedding_model = model_manager.get_default_model_instance(
  422. tenant_id=current_user.current_tenant_id,
  423. model_type=ModelType.TEXT_EMBEDDING
  424. )
  425. dataset.embedding_model = embedding_model.model
  426. dataset.embedding_model_provider = embedding_model.provider
  427. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  428. embedding_model.provider,
  429. embedding_model.model
  430. )
  431. dataset.collection_binding_id = dataset_collection_binding.id
  432. if not dataset.retrieval_model:
  433. default_retrieval_model = {
  434. 'search_method': 'semantic_search',
  435. 'reranking_enable': False,
  436. 'reranking_model': {
  437. 'reranking_provider_name': '',
  438. 'reranking_model_name': ''
  439. },
  440. 'top_k': 2,
  441. 'score_threshold_enabled': False
  442. }
  443. dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get(
  444. 'retrieval_model') else default_retrieval_model
  445. documents = []
  446. batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
  447. if 'original_document_id' in document_data and document_data["original_document_id"]:
  448. document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
  449. documents.append(document)
  450. else:
  451. # save process rule
  452. if not dataset_process_rule:
  453. process_rule = document_data["process_rule"]
  454. if process_rule["mode"] == "custom":
  455. dataset_process_rule = DatasetProcessRule(
  456. dataset_id=dataset.id,
  457. mode=process_rule["mode"],
  458. rules=json.dumps(process_rule["rules"]),
  459. created_by=account.id
  460. )
  461. elif process_rule["mode"] == "automatic":
  462. dataset_process_rule = DatasetProcessRule(
  463. dataset_id=dataset.id,
  464. mode=process_rule["mode"],
  465. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  466. created_by=account.id
  467. )
  468. db.session.add(dataset_process_rule)
  469. db.session.commit()
  470. position = DocumentService.get_documents_position(dataset.id)
  471. document_ids = []
  472. if document_data["data_source"]["type"] == "upload_file":
  473. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  474. for file_id in upload_file_list:
  475. file = db.session.query(UploadFile).filter(
  476. UploadFile.tenant_id == dataset.tenant_id,
  477. UploadFile.id == file_id
  478. ).first()
  479. # raise error if file not found
  480. if not file:
  481. raise FileNotExistsError()
  482. file_name = file.name
  483. data_source_info = {
  484. "upload_file_id": file_id,
  485. }
  486. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  487. document_data["data_source"]["type"],
  488. document_data["doc_form"],
  489. document_data["doc_language"],
  490. data_source_info, created_from, position,
  491. account, file_name, batch)
  492. db.session.add(document)
  493. db.session.flush()
  494. document_ids.append(document.id)
  495. documents.append(document)
  496. position += 1
  497. elif document_data["data_source"]["type"] == "notion_import":
  498. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  499. exist_page_ids = []
  500. exist_document = dict()
  501. documents = Document.query.filter_by(
  502. dataset_id=dataset.id,
  503. tenant_id=current_user.current_tenant_id,
  504. data_source_type='notion_import',
  505. enabled=True
  506. ).all()
  507. if documents:
  508. for document in documents:
  509. data_source_info = json.loads(document.data_source_info)
  510. exist_page_ids.append(data_source_info['notion_page_id'])
  511. exist_document[data_source_info['notion_page_id']] = document.id
  512. for notion_info in notion_info_list:
  513. workspace_id = notion_info['workspace_id']
  514. data_source_binding = DataSourceBinding.query.filter(
  515. db.and_(
  516. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  517. DataSourceBinding.provider == 'notion',
  518. DataSourceBinding.disabled == False,
  519. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  520. )
  521. ).first()
  522. if not data_source_binding:
  523. raise ValueError('Data source binding not found.')
  524. for page in notion_info['pages']:
  525. if page['page_id'] not in exist_page_ids:
  526. data_source_info = {
  527. "notion_workspace_id": workspace_id,
  528. "notion_page_id": page['page_id'],
  529. "notion_page_icon": page['page_icon'],
  530. "type": page['type']
  531. }
  532. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  533. document_data["data_source"]["type"],
  534. document_data["doc_form"],
  535. document_data["doc_language"],
  536. data_source_info, created_from, position,
  537. account, page['page_name'], batch)
  538. db.session.add(document)
  539. db.session.flush()
  540. document_ids.append(document.id)
  541. documents.append(document)
  542. position += 1
  543. else:
  544. exist_document.pop(page['page_id'])
  545. # delete not selected documents
  546. if len(exist_document) > 0:
  547. clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
  548. db.session.commit()
  549. # trigger async task
  550. document_indexing_task.delay(dataset.id, document_ids)
  551. return documents, batch
  552. @staticmethod
  553. def build_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
  554. document_language: str, data_source_info: dict, created_from: str, position: int,
  555. account: Account,
  556. name: str, batch: str):
  557. document = Document(
  558. tenant_id=dataset.tenant_id,
  559. dataset_id=dataset.id,
  560. position=position,
  561. data_source_type=data_source_type,
  562. data_source_info=json.dumps(data_source_info),
  563. dataset_process_rule_id=process_rule_id,
  564. batch=batch,
  565. name=name,
  566. created_from=created_from,
  567. created_by=account.id,
  568. doc_form=document_form,
  569. doc_language=document_language
  570. )
  571. return document
  572. @staticmethod
  573. def get_tenant_documents_count():
  574. documents_count = Document.query.filter(Document.completed_at.isnot(None),
  575. Document.enabled == True,
  576. Document.archived == False,
  577. Document.tenant_id == current_user.current_tenant_id).count()
  578. return documents_count
  579. @staticmethod
  580. def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
  581. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  582. created_from: str = 'web'):
  583. DatasetService.check_dataset_model_setting(dataset)
  584. document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
  585. if document.display_status != 'available':
  586. raise ValueError("Document is not available")
  587. # update document name
  588. if 'name' in document_data and document_data['name']:
  589. document.name = document_data['name']
  590. # save process rule
  591. if 'process_rule' in document_data and document_data['process_rule']:
  592. process_rule = document_data["process_rule"]
  593. if process_rule["mode"] == "custom":
  594. dataset_process_rule = DatasetProcessRule(
  595. dataset_id=dataset.id,
  596. mode=process_rule["mode"],
  597. rules=json.dumps(process_rule["rules"]),
  598. created_by=account.id
  599. )
  600. elif process_rule["mode"] == "automatic":
  601. dataset_process_rule = DatasetProcessRule(
  602. dataset_id=dataset.id,
  603. mode=process_rule["mode"],
  604. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  605. created_by=account.id
  606. )
  607. db.session.add(dataset_process_rule)
  608. db.session.commit()
  609. document.dataset_process_rule_id = dataset_process_rule.id
  610. # update document data source
  611. if 'data_source' in document_data and document_data['data_source']:
  612. file_name = ''
  613. data_source_info = {}
  614. if document_data["data_source"]["type"] == "upload_file":
  615. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  616. for file_id in upload_file_list:
  617. file = db.session.query(UploadFile).filter(
  618. UploadFile.tenant_id == dataset.tenant_id,
  619. UploadFile.id == file_id
  620. ).first()
  621. # raise error if file not found
  622. if not file:
  623. raise FileNotExistsError()
  624. file_name = file.name
  625. data_source_info = {
  626. "upload_file_id": file_id,
  627. }
  628. elif document_data["data_source"]["type"] == "notion_import":
  629. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  630. for notion_info in notion_info_list:
  631. workspace_id = notion_info['workspace_id']
  632. data_source_binding = DataSourceBinding.query.filter(
  633. db.and_(
  634. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  635. DataSourceBinding.provider == 'notion',
  636. DataSourceBinding.disabled == False,
  637. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  638. )
  639. ).first()
  640. if not data_source_binding:
  641. raise ValueError('Data source binding not found.')
  642. for page in notion_info['pages']:
  643. data_source_info = {
  644. "notion_workspace_id": workspace_id,
  645. "notion_page_id": page['page_id'],
  646. "notion_page_icon": page['page_icon'],
  647. "type": page['type']
  648. }
  649. document.data_source_type = document_data["data_source"]["type"]
  650. document.data_source_info = json.dumps(data_source_info)
  651. document.name = file_name
  652. # update document to be waiting
  653. document.indexing_status = 'waiting'
  654. document.completed_at = None
  655. document.processing_started_at = None
  656. document.parsing_completed_at = None
  657. document.cleaning_completed_at = None
  658. document.splitting_completed_at = None
  659. document.updated_at = datetime.datetime.utcnow()
  660. document.created_from = created_from
  661. document.doc_form = document_data['doc_form']
  662. db.session.add(document)
  663. db.session.commit()
  664. # update document segment
  665. update_params = {
  666. DocumentSegment.status: 're_segment'
  667. }
  668. DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
  669. db.session.commit()
  670. # trigger async task
  671. document_indexing_update_task.delay(document.dataset_id, document.id)
  672. return document
  673. @staticmethod
  674. def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
  675. count = 0
  676. if document_data["data_source"]["type"] == "upload_file":
  677. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  678. count = len(upload_file_list)
  679. elif document_data["data_source"]["type"] == "notion_import":
  680. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  681. for notion_info in notion_info_list:
  682. count = count + len(notion_info['pages'])
  683. embedding_model = None
  684. dataset_collection_binding_id = None
  685. retrieval_model = None
  686. if document_data['indexing_technique'] == 'high_quality':
  687. model_manager = ModelManager()
  688. embedding_model = model_manager.get_default_model_instance(
  689. tenant_id=current_user.current_tenant_id,
  690. model_type=ModelType.TEXT_EMBEDDING
  691. )
  692. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  693. embedding_model.provider,
  694. embedding_model.model
  695. )
  696. dataset_collection_binding_id = dataset_collection_binding.id
  697. if 'retrieval_model' in document_data and document_data['retrieval_model']:
  698. retrieval_model = document_data['retrieval_model']
  699. else:
  700. default_retrieval_model = {
  701. 'search_method': 'semantic_search',
  702. 'reranking_enable': False,
  703. 'reranking_model': {
  704. 'reranking_provider_name': '',
  705. 'reranking_model_name': ''
  706. },
  707. 'top_k': 2,
  708. 'score_threshold_enabled': False
  709. }
  710. retrieval_model = default_retrieval_model
  711. # save dataset
  712. dataset = Dataset(
  713. tenant_id=tenant_id,
  714. name='',
  715. data_source_type=document_data["data_source"]["type"],
  716. indexing_technique=document_data["indexing_technique"],
  717. created_by=account.id,
  718. embedding_model=embedding_model.model if embedding_model else None,
  719. embedding_model_provider=embedding_model.provider if embedding_model else None,
  720. collection_binding_id=dataset_collection_binding_id,
  721. retrieval_model=retrieval_model
  722. )
  723. db.session.add(dataset)
  724. db.session.flush()
  725. documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
  726. cut_length = 18
  727. cut_name = documents[0].name[:cut_length]
  728. dataset.name = cut_name + '...'
  729. dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
  730. db.session.commit()
  731. return dataset, documents, batch
  732. @classmethod
  733. def document_create_args_validate(cls, args: dict):
  734. if 'original_document_id' not in args or not args['original_document_id']:
  735. DocumentService.data_source_args_validate(args)
  736. DocumentService.process_rule_args_validate(args)
  737. else:
  738. if ('data_source' not in args and not args['data_source']) \
  739. and ('process_rule' not in args and not args['process_rule']):
  740. raise ValueError("Data source or Process rule is required")
  741. else:
  742. if 'data_source' in args and args['data_source']:
  743. DocumentService.data_source_args_validate(args)
  744. if 'process_rule' in args and args['process_rule']:
  745. DocumentService.process_rule_args_validate(args)
  746. @classmethod
  747. def data_source_args_validate(cls, args: dict):
  748. if 'data_source' not in args or not args['data_source']:
  749. raise ValueError("Data source is required")
  750. if not isinstance(args['data_source'], dict):
  751. raise ValueError("Data source is invalid")
  752. if 'type' not in args['data_source'] or not args['data_source']['type']:
  753. raise ValueError("Data source type is required")
  754. if args['data_source']['type'] not in Document.DATA_SOURCES:
  755. raise ValueError("Data source type is invalid")
  756. if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
  757. raise ValueError("Data source info is required")
  758. if args['data_source']['type'] == 'upload_file':
  759. if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  760. 'file_info_list']:
  761. raise ValueError("File source info is required")
  762. if args['data_source']['type'] == 'notion_import':
  763. if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  764. 'notion_info_list']:
  765. raise ValueError("Notion source info is required")
  766. @classmethod
  767. def process_rule_args_validate(cls, args: dict):
  768. if 'process_rule' not in args or not args['process_rule']:
  769. raise ValueError("Process rule is required")
  770. if not isinstance(args['process_rule'], dict):
  771. raise ValueError("Process rule is invalid")
  772. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  773. raise ValueError("Process rule mode is required")
  774. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  775. raise ValueError("Process rule mode is invalid")
  776. if args['process_rule']['mode'] == 'automatic':
  777. args['process_rule']['rules'] = {}
  778. else:
  779. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  780. raise ValueError("Process rule rules is required")
  781. if not isinstance(args['process_rule']['rules'], dict):
  782. raise ValueError("Process rule rules is invalid")
  783. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  784. or args['process_rule']['rules']['pre_processing_rules'] is None:
  785. raise ValueError("Process rule pre_processing_rules is required")
  786. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  787. raise ValueError("Process rule pre_processing_rules is invalid")
  788. unique_pre_processing_rule_dicts = {}
  789. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  790. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  791. raise ValueError("Process rule pre_processing_rules id is required")
  792. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  793. raise ValueError("Process rule pre_processing_rules id is invalid")
  794. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  795. raise ValueError("Process rule pre_processing_rules enabled is required")
  796. if not isinstance(pre_processing_rule['enabled'], bool):
  797. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  798. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  799. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  800. if 'segmentation' not in args['process_rule']['rules'] \
  801. or args['process_rule']['rules']['segmentation'] is None:
  802. raise ValueError("Process rule segmentation is required")
  803. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  804. raise ValueError("Process rule segmentation is invalid")
  805. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  806. or not args['process_rule']['rules']['segmentation']['separator']:
  807. raise ValueError("Process rule segmentation separator is required")
  808. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  809. raise ValueError("Process rule segmentation separator is invalid")
  810. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  811. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  812. raise ValueError("Process rule segmentation max_tokens is required")
  813. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  814. raise ValueError("Process rule segmentation max_tokens is invalid")
  815. @classmethod
  816. def estimate_args_validate(cls, args: dict):
  817. if 'info_list' not in args or not args['info_list']:
  818. raise ValueError("Data source info is required")
  819. if not isinstance(args['info_list'], dict):
  820. raise ValueError("Data info is invalid")
  821. if 'process_rule' not in args or not args['process_rule']:
  822. raise ValueError("Process rule is required")
  823. if not isinstance(args['process_rule'], dict):
  824. raise ValueError("Process rule is invalid")
  825. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  826. raise ValueError("Process rule mode is required")
  827. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  828. raise ValueError("Process rule mode is invalid")
  829. if args['process_rule']['mode'] == 'automatic':
  830. args['process_rule']['rules'] = {}
  831. else:
  832. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  833. raise ValueError("Process rule rules is required")
  834. if not isinstance(args['process_rule']['rules'], dict):
  835. raise ValueError("Process rule rules is invalid")
  836. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  837. or args['process_rule']['rules']['pre_processing_rules'] is None:
  838. raise ValueError("Process rule pre_processing_rules is required")
  839. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  840. raise ValueError("Process rule pre_processing_rules is invalid")
  841. unique_pre_processing_rule_dicts = {}
  842. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  843. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  844. raise ValueError("Process rule pre_processing_rules id is required")
  845. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  846. raise ValueError("Process rule pre_processing_rules id is invalid")
  847. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  848. raise ValueError("Process rule pre_processing_rules enabled is required")
  849. if not isinstance(pre_processing_rule['enabled'], bool):
  850. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  851. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  852. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  853. if 'segmentation' not in args['process_rule']['rules'] \
  854. or args['process_rule']['rules']['segmentation'] is None:
  855. raise ValueError("Process rule segmentation is required")
  856. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  857. raise ValueError("Process rule segmentation is invalid")
  858. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  859. or not args['process_rule']['rules']['segmentation']['separator']:
  860. raise ValueError("Process rule segmentation separator is required")
  861. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  862. raise ValueError("Process rule segmentation separator is invalid")
  863. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  864. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  865. raise ValueError("Process rule segmentation max_tokens is required")
  866. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  867. raise ValueError("Process rule segmentation max_tokens is invalid")
  868. class SegmentService:
  869. @classmethod
  870. def segment_create_args_validate(cls, args: dict, document: Document):
  871. if document.doc_form == 'qa_model':
  872. if 'answer' not in args or not args['answer']:
  873. raise ValueError("Answer is required")
  874. if not args['answer'].strip():
  875. raise ValueError("Answer is empty")
  876. if 'content' not in args or not args['content'] or not args['content'].strip():
  877. raise ValueError("Content is empty")
  878. @classmethod
  879. def create_segment(cls, args: dict, document: Document, dataset: Dataset):
  880. content = args['content']
  881. doc_id = str(uuid.uuid4())
  882. segment_hash = helper.generate_text_hash(content)
  883. tokens = 0
  884. if dataset.indexing_technique == 'high_quality':
  885. model_manager = ModelManager()
  886. embedding_model = model_manager.get_model_instance(
  887. tenant_id=current_user.current_tenant_id,
  888. provider=dataset.embedding_model_provider,
  889. model_type=ModelType.TEXT_EMBEDDING,
  890. model=dataset.embedding_model
  891. )
  892. # calc embedding use tokens
  893. model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
  894. tokens = model_type_instance.get_num_tokens(
  895. model=embedding_model.model,
  896. credentials=embedding_model.credentials,
  897. texts=[content]
  898. )
  899. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  900. DocumentSegment.document_id == document.id
  901. ).scalar()
  902. segment_document = DocumentSegment(
  903. tenant_id=current_user.current_tenant_id,
  904. dataset_id=document.dataset_id,
  905. document_id=document.id,
  906. index_node_id=doc_id,
  907. index_node_hash=segment_hash,
  908. position=max_position + 1 if max_position else 1,
  909. content=content,
  910. word_count=len(content),
  911. tokens=tokens,
  912. status='completed',
  913. indexing_at=datetime.datetime.utcnow(),
  914. completed_at=datetime.datetime.utcnow(),
  915. created_by=current_user.id
  916. )
  917. if document.doc_form == 'qa_model':
  918. segment_document.answer = args['answer']
  919. db.session.add(segment_document)
  920. db.session.commit()
  921. # save vector index
  922. try:
  923. VectorService.create_segment_vector(args['keywords'], segment_document, dataset)
  924. except Exception as e:
  925. logging.exception("create segment index failed")
  926. segment_document.enabled = False
  927. segment_document.disabled_at = datetime.datetime.utcnow()
  928. segment_document.status = 'error'
  929. segment_document.error = str(e)
  930. db.session.commit()
  931. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
  932. return segment
  933. @classmethod
  934. def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
  935. embedding_model = None
  936. if dataset.indexing_technique == 'high_quality':
  937. model_manager = ModelManager()
  938. embedding_model = model_manager.get_model_instance(
  939. tenant_id=current_user.current_tenant_id,
  940. provider=dataset.embedding_model_provider,
  941. model_type=ModelType.TEXT_EMBEDDING,
  942. model=dataset.embedding_model
  943. )
  944. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  945. DocumentSegment.document_id == document.id
  946. ).scalar()
  947. pre_segment_data_list = []
  948. segment_data_list = []
  949. for segment_item in segments:
  950. content = segment_item['content']
  951. doc_id = str(uuid.uuid4())
  952. segment_hash = helper.generate_text_hash(content)
  953. tokens = 0
  954. if dataset.indexing_technique == 'high_quality' and embedding_model:
  955. # calc embedding use tokens
  956. model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
  957. tokens = model_type_instance.get_num_tokens(
  958. model=embedding_model.model,
  959. credentials=embedding_model.credentials,
  960. texts=[content]
  961. )
  962. segment_document = DocumentSegment(
  963. tenant_id=current_user.current_tenant_id,
  964. dataset_id=document.dataset_id,
  965. document_id=document.id,
  966. index_node_id=doc_id,
  967. index_node_hash=segment_hash,
  968. position=max_position + 1 if max_position else 1,
  969. content=content,
  970. word_count=len(content),
  971. tokens=tokens,
  972. status='completed',
  973. indexing_at=datetime.datetime.utcnow(),
  974. completed_at=datetime.datetime.utcnow(),
  975. created_by=current_user.id
  976. )
  977. if document.doc_form == 'qa_model':
  978. segment_document.answer = segment_item['answer']
  979. db.session.add(segment_document)
  980. segment_data_list.append(segment_document)
  981. pre_segment_data = {
  982. 'segment': segment_document,
  983. 'keywords': segment_item['keywords']
  984. }
  985. pre_segment_data_list.append(pre_segment_data)
  986. try:
  987. # save vector index
  988. VectorService.multi_create_segment_vector(pre_segment_data_list, dataset)
  989. except Exception as e:
  990. logging.exception("create segment index failed")
  991. for segment_document in segment_data_list:
  992. segment_document.enabled = False
  993. segment_document.disabled_at = datetime.datetime.utcnow()
  994. segment_document.status = 'error'
  995. segment_document.error = str(e)
  996. db.session.commit()
  997. return segment_data_list
  998. @classmethod
  999. def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
  1000. indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
  1001. cache_result = redis_client.get(indexing_cache_key)
  1002. if cache_result is not None:
  1003. raise ValueError("Segment is indexing, please try again later")
  1004. try:
  1005. content = args['content']
  1006. if segment.content == content:
  1007. if document.doc_form == 'qa_model':
  1008. segment.answer = args['answer']
  1009. if 'keywords' in args and args['keywords']:
  1010. segment.keywords = args['keywords']
  1011. if'enabled' in args and args['enabled'] is not None:
  1012. segment.enabled = args['enabled']
  1013. db.session.add(segment)
  1014. db.session.commit()
  1015. # update segment index task
  1016. if args['keywords']:
  1017. kw_index = IndexBuilder.get_index(dataset, 'economy')
  1018. # delete from keyword index
  1019. kw_index.delete_by_ids([segment.index_node_id])
  1020. # save keyword index
  1021. kw_index.update_segment_keywords_index(segment.index_node_id, segment.keywords)
  1022. else:
  1023. segment_hash = helper.generate_text_hash(content)
  1024. tokens = 0
  1025. if dataset.indexing_technique == 'high_quality':
  1026. model_manager = ModelManager()
  1027. embedding_model = model_manager.get_model_instance(
  1028. tenant_id=current_user.current_tenant_id,
  1029. provider=dataset.embedding_model_provider,
  1030. model_type=ModelType.TEXT_EMBEDDING,
  1031. model=dataset.embedding_model
  1032. )
  1033. # calc embedding use tokens
  1034. model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
  1035. tokens = model_type_instance.get_num_tokens(
  1036. model=embedding_model.model,
  1037. credentials=embedding_model.credentials,
  1038. texts=[content]
  1039. )
  1040. segment.content = content
  1041. segment.index_node_hash = segment_hash
  1042. segment.word_count = len(content)
  1043. segment.tokens = tokens
  1044. segment.status = 'completed'
  1045. segment.indexing_at = datetime.datetime.utcnow()
  1046. segment.completed_at = datetime.datetime.utcnow()
  1047. segment.updated_by = current_user.id
  1048. segment.updated_at = datetime.datetime.utcnow()
  1049. if document.doc_form == 'qa_model':
  1050. segment.answer = args['answer']
  1051. db.session.add(segment)
  1052. db.session.commit()
  1053. # update segment vector index
  1054. VectorService.update_segment_vector(args['keywords'], segment, dataset)
  1055. except Exception as e:
  1056. logging.exception("update segment index failed")
  1057. segment.enabled = False
  1058. segment.disabled_at = datetime.datetime.utcnow()
  1059. segment.status = 'error'
  1060. segment.error = str(e)
  1061. db.session.commit()
  1062. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
  1063. return segment
  1064. @classmethod
  1065. def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
  1066. indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)
  1067. cache_result = redis_client.get(indexing_cache_key)
  1068. if cache_result is not None:
  1069. raise ValueError("Segment is deleting.")
  1070. # enabled segment need to delete index
  1071. if segment.enabled:
  1072. # send delete segment index task
  1073. redis_client.setex(indexing_cache_key, 600, 1)
  1074. delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
  1075. db.session.delete(segment)
  1076. db.session.commit()
  1077. class DatasetCollectionBindingService:
  1078. @classmethod
  1079. def get_dataset_collection_binding(cls, provider_name: str, model_name: str,
  1080. collection_type: str = 'dataset') -> DatasetCollectionBinding:
  1081. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1082. filter(DatasetCollectionBinding.provider_name == provider_name,
  1083. DatasetCollectionBinding.model_name == model_name,
  1084. DatasetCollectionBinding.type == collection_type). \
  1085. order_by(DatasetCollectionBinding.created_at). \
  1086. first()
  1087. if not dataset_collection_binding:
  1088. dataset_collection_binding = DatasetCollectionBinding(
  1089. provider_name=provider_name,
  1090. model_name=model_name,
  1091. collection_name="Vector_index_" + str(uuid.uuid4()).replace("-", "_") + '_Node',
  1092. type=collection_type
  1093. )
  1094. db.session.add(dataset_collection_binding)
  1095. db.session.commit()
  1096. return dataset_collection_binding
  1097. @classmethod
  1098. def get_dataset_collection_binding_by_id_and_type(cls, collection_binding_id: str,
  1099. collection_type: str = 'dataset') -> DatasetCollectionBinding:
  1100. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1101. filter(DatasetCollectionBinding.id == collection_binding_id,
  1102. DatasetCollectionBinding.type == collection_type). \
  1103. order_by(DatasetCollectionBinding.created_at). \
  1104. first()
  1105. return dataset_collection_binding