| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158 | 
							- import logging
 
- import time
 
- import numpy as np
 
- from sklearn.manifold import TSNE
 
- from core.embedding.cached_embedding import CacheEmbedding
 
- from core.model_manager import ModelManager
 
- from core.model_runtime.entities.model_entities import ModelType
 
- from core.rag.datasource.entity.embedding import Embeddings
 
- from core.rag.datasource.retrieval_service import RetrievalService
 
- from core.rag.models.document import Document
 
- from extensions.ext_database import db
 
- from models.account import Account
 
- from models.dataset import Dataset, DatasetQuery, DocumentSegment
 
- default_retrieval_model = {
 
-     'search_method': 'semantic_search',
 
-     'reranking_enable': False,
 
-     'reranking_model': {
 
-         'reranking_provider_name': '',
 
-         'reranking_model_name': ''
 
-     },
 
-     'top_k': 2,
 
-     'score_threshold_enabled': False
 
- }
 
- class HitTestingService:
 
-     @classmethod
 
-     def retrieve(cls, dataset: Dataset, query: str, account: Account, retrieval_model: dict, limit: int = 10) -> dict:
 
-         if dataset.available_document_count == 0 or dataset.available_segment_count == 0:
 
-             return {
 
-                 "query": {
 
-                     "content": query,
 
-                     "tsne_position": {'x': 0, 'y': 0},
 
-                 },
 
-                 "records": []
 
-             }
 
-         start = time.perf_counter()
 
-         # get retrieval model , if the model is not setting , using default
 
-         if not retrieval_model:
 
-             retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
 
-         # get embedding model
 
-         model_manager = ModelManager()
 
-         embedding_model = model_manager.get_model_instance(
 
-             tenant_id=dataset.tenant_id,
 
-             model_type=ModelType.TEXT_EMBEDDING,
 
-             provider=dataset.embedding_model_provider,
 
-             model=dataset.embedding_model
 
-         )
 
-         embeddings = CacheEmbedding(embedding_model)
 
-         all_documents = RetrievalService.retrieve(retrival_method=retrieval_model['search_method'],
 
-                                                   dataset_id=dataset.id,
 
-                                                   query=query,
 
-                                                   top_k=retrieval_model['top_k'],
 
-                                                   score_threshold=retrieval_model['score_threshold']
 
-                                                   if retrieval_model['score_threshold_enabled'] else None,
 
-                                                   reranking_model=retrieval_model['reranking_model']
 
-                                                   if retrieval_model['reranking_enable'] else None
 
-                                                   )
 
-         end = time.perf_counter()
 
-         logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")
 
-         dataset_query = DatasetQuery(
 
-             dataset_id=dataset.id,
 
-             content=query,
 
-             source='hit_testing',
 
-             created_by_role='account',
 
-             created_by=account.id
 
-         )
 
-         db.session.add(dataset_query)
 
-         db.session.commit()
 
-         return cls.compact_retrieve_response(dataset, embeddings, query, all_documents)
 
-     @classmethod
 
-     def compact_retrieve_response(cls, dataset: Dataset, embeddings: Embeddings, query: str, documents: list[Document]):
 
-         text_embeddings = [
 
-             embeddings.embed_query(query)
 
-         ]
 
-         text_embeddings.extend(embeddings.embed_documents([document.page_content for document in documents]))
 
-         tsne_position_data = cls.get_tsne_positions_from_embeddings(text_embeddings)
 
-         query_position = tsne_position_data.pop(0)
 
-         i = 0
 
-         records = []
 
-         for document in documents:
 
-             index_node_id = document.metadata['doc_id']
 
-             segment = db.session.query(DocumentSegment).filter(
 
-                 DocumentSegment.dataset_id == dataset.id,
 
-                 DocumentSegment.enabled == True,
 
-                 DocumentSegment.status == 'completed',
 
-                 DocumentSegment.index_node_id == index_node_id
 
-             ).first()
 
-             if not segment:
 
-                 i += 1
 
-                 continue
 
-             record = {
 
-                 "segment": segment,
 
-                 "score": document.metadata.get('score', None),
 
-                 "tsne_position": tsne_position_data[i]
 
-             }
 
-             records.append(record)
 
-             i += 1
 
-         return {
 
-             "query": {
 
-                 "content": query,
 
-                 "tsne_position": query_position,
 
-             },
 
-             "records": records
 
-         }
 
-     @classmethod
 
-     def get_tsne_positions_from_embeddings(cls, embeddings: list):
 
-         embedding_length = len(embeddings)
 
-         if embedding_length <= 1:
 
-             return [{'x': 0, 'y': 0}]
 
-         noise = np.random.normal(0, 1e-4, np.array(embeddings).shape)
 
-         concatenate_data = np.array(embeddings) + noise
 
-         concatenate_data = concatenate_data.reshape(embedding_length, -1)
 
-         perplexity = embedding_length / 2 + 1
 
-         if perplexity >= embedding_length:
 
-             perplexity = max(embedding_length - 1, 1)
 
-         tsne = TSNE(n_components=2, perplexity=perplexity, early_exaggeration=12.0)
 
-         data_tsne = tsne.fit_transform(concatenate_data)
 
-         tsne_position_data = []
 
-         for i in range(len(data_tsne)):
 
-             tsne_position_data.append({'x': float(data_tsne[i][0]), 'y': float(data_tsne[i][1])})
 
-         return tsne_position_data
 
-     @classmethod
 
-     def hit_testing_args_check(cls, args):
 
-         query = args['query']
 
-         if not query or len(query) > 250:
 
-             raise ValueError('Query is required and cannot exceed 250 characters')
 
 
  |