hit_testing_service.py 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132
  1. import logging
  2. import time
  3. import numpy as np
  4. from sklearn.manifold import TSNE
  5. from core.rag.datasource.retrieval_service import RetrievalService
  6. from core.rag.models.document import Document
  7. from core.rag.retrieval.retrival_methods import RetrievalMethod
  8. from extensions.ext_database import db
  9. from models.account import Account
  10. from models.dataset import Dataset, DatasetQuery, DocumentSegment
  11. default_retrieval_model = {
  12. 'search_method': RetrievalMethod.SEMANTIC_SEARCH,
  13. 'reranking_enable': False,
  14. 'reranking_model': {
  15. 'reranking_provider_name': '',
  16. 'reranking_model_name': ''
  17. },
  18. 'top_k': 2,
  19. 'score_threshold_enabled': False
  20. }
  21. class HitTestingService:
  22. @classmethod
  23. def retrieve(cls, dataset: Dataset, query: str, account: Account, retrieval_model: dict, limit: int = 10) -> dict:
  24. if dataset.available_document_count == 0 or dataset.available_segment_count == 0:
  25. return {
  26. "query": {
  27. "content": query,
  28. "tsne_position": {'x': 0, 'y': 0},
  29. },
  30. "records": []
  31. }
  32. start = time.perf_counter()
  33. # get retrieval model , if the model is not setting , using default
  34. if not retrieval_model:
  35. retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
  36. all_documents = RetrievalService.retrieve(retrival_method=retrieval_model['search_method'],
  37. dataset_id=dataset.id,
  38. query=query,
  39. top_k=retrieval_model['top_k'],
  40. score_threshold=retrieval_model['score_threshold']
  41. if retrieval_model['score_threshold_enabled'] else None,
  42. reranking_model=retrieval_model['reranking_model']
  43. if retrieval_model['reranking_enable'] else None
  44. )
  45. end = time.perf_counter()
  46. logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")
  47. dataset_query = DatasetQuery(
  48. dataset_id=dataset.id,
  49. content=query,
  50. source='hit_testing',
  51. created_by_role='account',
  52. created_by=account.id
  53. )
  54. db.session.add(dataset_query)
  55. db.session.commit()
  56. return cls.compact_retrieve_response(dataset, query, all_documents)
  57. @classmethod
  58. def compact_retrieve_response(cls, dataset: Dataset, query: str, documents: list[Document]):
  59. i = 0
  60. records = []
  61. for document in documents:
  62. index_node_id = document.metadata['doc_id']
  63. segment = db.session.query(DocumentSegment).filter(
  64. DocumentSegment.dataset_id == dataset.id,
  65. DocumentSegment.enabled == True,
  66. DocumentSegment.status == 'completed',
  67. DocumentSegment.index_node_id == index_node_id
  68. ).first()
  69. if not segment:
  70. i += 1
  71. continue
  72. record = {
  73. "segment": segment,
  74. "score": document.metadata.get('score', None),
  75. }
  76. records.append(record)
  77. i += 1
  78. return {
  79. "query": {
  80. "content": query,
  81. },
  82. "records": records
  83. }
  84. @classmethod
  85. def get_tsne_positions_from_embeddings(cls, embeddings: list):
  86. embedding_length = len(embeddings)
  87. if embedding_length <= 1:
  88. return [{'x': 0, 'y': 0}]
  89. noise = np.random.normal(0, 1e-4, np.array(embeddings).shape)
  90. concatenate_data = np.array(embeddings) + noise
  91. concatenate_data = concatenate_data.reshape(embedding_length, -1)
  92. perplexity = embedding_length / 2 + 1
  93. if perplexity >= embedding_length:
  94. perplexity = max(embedding_length - 1, 1)
  95. tsne = TSNE(n_components=2, perplexity=perplexity, early_exaggeration=12.0)
  96. data_tsne = tsne.fit_transform(concatenate_data)
  97. tsne_position_data = []
  98. for i in range(len(data_tsne)):
  99. tsne_position_data.append({'x': float(data_tsne[i][0]), 'y': float(data_tsne[i][1])})
  100. return tsne_position_data
  101. @classmethod
  102. def hit_testing_args_check(cls, args):
  103. query = args['query']
  104. if not query or len(query) > 250:
  105. raise ValueError('Query is required and cannot exceed 250 characters')