orchestrator_rule_parser.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302
  1. import math
  2. from typing import Optional
  3. from langchain import WikipediaAPIWrapper
  4. from langchain.callbacks.manager import Callbacks
  5. from langchain.memory.chat_memory import BaseChatMemory
  6. from langchain.tools import BaseTool, Tool, WikipediaQueryRun
  7. from pydantic import BaseModel, Field
  8. from core.agent.agent_executor import AgentExecutor, PlanningStrategy, AgentConfiguration
  9. from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
  10. from core.callback_handler.dataset_tool_callback_handler import DatasetToolCallbackHandler
  11. from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
  12. from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
  13. from core.chain.sensitive_word_avoidance_chain import SensitiveWordAvoidanceChain
  14. from core.conversation_message_task import ConversationMessageTask
  15. from core.model_providers.model_factory import ModelFactory
  16. from core.model_providers.models.entity.model_params import ModelKwargs, ModelMode
  17. from core.tool.dataset_retriever_tool import DatasetRetrieverTool
  18. from core.tool.provider.serpapi_provider import SerpAPIToolProvider
  19. from core.tool.serpapi_wrapper import OptimizedSerpAPIWrapper, OptimizedSerpAPIInput
  20. from core.tool.web_reader_tool import WebReaderTool
  21. from extensions.ext_database import db
  22. from libs import helper
  23. from models.dataset import Dataset, DatasetProcessRule
  24. from models.model import AppModelConfig
  25. class OrchestratorRuleParser:
  26. """Parse the orchestrator rule to entities."""
  27. def __init__(self, tenant_id: str, app_model_config: AppModelConfig):
  28. self.tenant_id = tenant_id
  29. self.app_model_config = app_model_config
  30. def to_agent_executor(self, conversation_message_task: ConversationMessageTask, memory: Optional[BaseChatMemory],
  31. rest_tokens: int, chain_callback: MainChainGatherCallbackHandler) \
  32. -> Optional[AgentExecutor]:
  33. if not self.app_model_config.agent_mode_dict:
  34. return None
  35. agent_mode_config = self.app_model_config.agent_mode_dict
  36. model_dict = self.app_model_config.model_dict
  37. chain = None
  38. if agent_mode_config and agent_mode_config.get('enabled'):
  39. tool_configs = agent_mode_config.get('tools', [])
  40. agent_provider_name = model_dict.get('provider', 'openai')
  41. agent_model_name = model_dict.get('name', 'gpt-4')
  42. agent_model_instance = ModelFactory.get_text_generation_model(
  43. tenant_id=self.tenant_id,
  44. model_provider_name=agent_provider_name,
  45. model_name=agent_model_name,
  46. model_kwargs=ModelKwargs(
  47. temperature=0.2,
  48. top_p=0.3,
  49. max_tokens=1500
  50. )
  51. )
  52. # add agent callback to record agent thoughts
  53. agent_callback = AgentLoopGatherCallbackHandler(
  54. model_instant=agent_model_instance,
  55. conversation_message_task=conversation_message_task
  56. )
  57. chain_callback.agent_callback = agent_callback
  58. agent_model_instance.add_callbacks([agent_callback])
  59. planning_strategy = PlanningStrategy(agent_mode_config.get('strategy', 'router'))
  60. # only OpenAI chat model (include Azure) support function call, use ReACT instead
  61. if agent_model_instance.model_mode != ModelMode.CHAT \
  62. or agent_model_instance.name not in ['openai', 'azure_openai']:
  63. if planning_strategy in [PlanningStrategy.FUNCTION_CALL, PlanningStrategy.MULTI_FUNCTION_CALL]:
  64. planning_strategy = PlanningStrategy.REACT
  65. elif planning_strategy == PlanningStrategy.ROUTER:
  66. planning_strategy = PlanningStrategy.REACT_ROUTER
  67. summary_model_instance = ModelFactory.get_text_generation_model(
  68. tenant_id=self.tenant_id,
  69. model_kwargs=ModelKwargs(
  70. temperature=0,
  71. max_tokens=500
  72. )
  73. )
  74. tools = self.to_tools(
  75. tool_configs=tool_configs,
  76. conversation_message_task=conversation_message_task,
  77. rest_tokens=rest_tokens,
  78. callbacks=[agent_callback, DifyStdOutCallbackHandler()]
  79. )
  80. if len(tools) == 0:
  81. return None
  82. agent_configuration = AgentConfiguration(
  83. strategy=planning_strategy,
  84. model_instance=agent_model_instance,
  85. tools=tools,
  86. summary_model_instance=summary_model_instance,
  87. memory=memory,
  88. callbacks=[chain_callback, agent_callback],
  89. max_iterations=10,
  90. max_execution_time=400.0,
  91. early_stopping_method="generate"
  92. )
  93. return AgentExecutor(agent_configuration)
  94. return chain
  95. def to_sensitive_word_avoidance_chain(self, callbacks: Callbacks = None, **kwargs) \
  96. -> Optional[SensitiveWordAvoidanceChain]:
  97. """
  98. Convert app sensitive word avoidance config to chain
  99. :param kwargs:
  100. :return:
  101. """
  102. if not self.app_model_config.sensitive_word_avoidance_dict:
  103. return None
  104. sensitive_word_avoidance_config = self.app_model_config.sensitive_word_avoidance_dict
  105. sensitive_words = sensitive_word_avoidance_config.get("words", "")
  106. if sensitive_word_avoidance_config.get("enabled", False) and sensitive_words:
  107. return SensitiveWordAvoidanceChain(
  108. sensitive_words=sensitive_words.split(","),
  109. canned_response=sensitive_word_avoidance_config.get("canned_response", ''),
  110. output_key="sensitive_word_avoidance_output",
  111. callbacks=callbacks,
  112. **kwargs
  113. )
  114. return None
  115. def to_tools(self, tool_configs: list, conversation_message_task: ConversationMessageTask,
  116. rest_tokens: int, callbacks: Callbacks = None) -> list[BaseTool]:
  117. """
  118. Convert app agent tool configs to tools
  119. :param rest_tokens:
  120. :param tool_configs: app agent tool configs
  121. :param conversation_message_task:
  122. :param callbacks:
  123. :return:
  124. """
  125. tools = []
  126. for tool_config in tool_configs:
  127. tool_type = list(tool_config.keys())[0]
  128. tool_val = list(tool_config.values())[0]
  129. if not tool_val.get("enabled") or tool_val.get("enabled") is not True:
  130. continue
  131. tool = None
  132. if tool_type == "dataset":
  133. tool = self.to_dataset_retriever_tool(tool_val, conversation_message_task, rest_tokens)
  134. elif tool_type == "web_reader":
  135. tool = self.to_web_reader_tool()
  136. elif tool_type == "google_search":
  137. tool = self.to_google_search_tool()
  138. elif tool_type == "wikipedia":
  139. tool = self.to_wikipedia_tool()
  140. elif tool_type == "current_datetime":
  141. tool = self.to_current_datetime_tool()
  142. if tool:
  143. tool.callbacks.extend(callbacks)
  144. tools.append(tool)
  145. return tools
  146. def to_dataset_retriever_tool(self, tool_config: dict, conversation_message_task: ConversationMessageTask,
  147. rest_tokens: int) \
  148. -> Optional[BaseTool]:
  149. """
  150. A dataset tool is a tool that can be used to retrieve information from a dataset
  151. :param rest_tokens:
  152. :param tool_config:
  153. :param conversation_message_task:
  154. :return:
  155. """
  156. # get dataset from dataset id
  157. dataset = db.session.query(Dataset).filter(
  158. Dataset.tenant_id == self.tenant_id,
  159. Dataset.id == tool_config.get("id")
  160. ).first()
  161. if dataset and dataset.available_document_count == 0 and dataset.available_document_count == 0:
  162. return None
  163. k = self._dynamic_calc_retrieve_k(dataset, rest_tokens)
  164. tool = DatasetRetrieverTool.from_dataset(
  165. dataset=dataset,
  166. k=k,
  167. callbacks=[DatasetToolCallbackHandler(conversation_message_task)]
  168. )
  169. return tool
  170. def to_web_reader_tool(self) -> Optional[BaseTool]:
  171. """
  172. A tool for reading web pages
  173. :return:
  174. """
  175. summary_model_instance = ModelFactory.get_text_generation_model(
  176. tenant_id=self.tenant_id,
  177. model_kwargs=ModelKwargs(
  178. temperature=0,
  179. max_tokens=500
  180. )
  181. )
  182. summary_llm = summary_model_instance.client
  183. tool = WebReaderTool(
  184. llm=summary_llm,
  185. max_chunk_length=4000,
  186. continue_reading=True,
  187. callbacks=[DifyStdOutCallbackHandler()]
  188. )
  189. return tool
  190. def to_google_search_tool(self) -> Optional[BaseTool]:
  191. tool_provider = SerpAPIToolProvider(tenant_id=self.tenant_id)
  192. func_kwargs = tool_provider.credentials_to_func_kwargs()
  193. if not func_kwargs:
  194. return None
  195. tool = Tool(
  196. name="google_search",
  197. description="A tool for performing a Google search and extracting snippets and webpages "
  198. "when you need to search for something you don't know or when your information "
  199. "is not up to date. "
  200. "Input should be a search query.",
  201. func=OptimizedSerpAPIWrapper(**func_kwargs).run,
  202. args_schema=OptimizedSerpAPIInput,
  203. callbacks=[DifyStdOutCallbackHandler()]
  204. )
  205. return tool
  206. def to_current_datetime_tool(self) -> Optional[BaseTool]:
  207. tool = Tool(
  208. name="current_datetime",
  209. description="A tool when you want to get the current date, time, week, month or year, "
  210. "and the time zone is UTC. Result is \"<date> <time> <timezone> <week>\".",
  211. func=helper.get_current_datetime,
  212. callbacks=[DifyStdOutCallbackHandler()]
  213. )
  214. return tool
  215. def to_wikipedia_tool(self) -> Optional[BaseTool]:
  216. class WikipediaInput(BaseModel):
  217. query: str = Field(..., description="search query.")
  218. return WikipediaQueryRun(
  219. name="wikipedia",
  220. api_wrapper=WikipediaAPIWrapper(doc_content_chars_max=4000),
  221. args_schema=WikipediaInput,
  222. callbacks=[DifyStdOutCallbackHandler()]
  223. )
  224. @classmethod
  225. def _dynamic_calc_retrieve_k(cls, dataset: Dataset, rest_tokens: int) -> int:
  226. DEFAULT_K = 2
  227. CONTEXT_TOKENS_PERCENT = 0.3
  228. if rest_tokens == -1:
  229. return DEFAULT_K
  230. processing_rule = dataset.latest_process_rule
  231. if not processing_rule:
  232. return DEFAULT_K
  233. if processing_rule.mode == "custom":
  234. rules = processing_rule.rules_dict
  235. if not rules:
  236. return DEFAULT_K
  237. segmentation = rules["segmentation"]
  238. segment_max_tokens = segmentation["max_tokens"]
  239. else:
  240. segment_max_tokens = DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens']
  241. # when rest_tokens is less than default context tokens
  242. if rest_tokens < segment_max_tokens * DEFAULT_K:
  243. return rest_tokens // segment_max_tokens
  244. context_limit_tokens = math.floor(rest_tokens * CONTEXT_TOKENS_PERCENT)
  245. # when context_limit_tokens is less than default context tokens, use default_k
  246. if context_limit_tokens <= segment_max_tokens * DEFAULT_K:
  247. return DEFAULT_K
  248. # Expand the k value when there's still some room left in the 30% rest tokens space
  249. return context_limit_tokens // segment_max_tokens