非法操作 5660878f7b chore: update the tool's doc (#6167) před 11 měsíci
..
configs 9622fbb62f feat: app rate limit (#5844) před 11 měsíci
constants 6ef401a9f0 feat:add tts-streaming config and future (#5492) před 11 měsíci
controllers 9622fbb62f feat: app rate limit (#5844) před 11 měsíci
core 5660878f7b chore: update the tool's doc (#6167) před 11 měsíci
docker cb09dbef66 feat: correctly delete applications using Celery workers (#5787) před 11 měsíci
events cb09dbef66 feat: correctly delete applications using Celery workers (#5787) před 11 měsíci
extensions cbbe28f40d fix azure stream download (#6063) před 11 měsíci
fields 9622fbb62f feat: app rate limit (#5844) před 11 měsíci
libs 9622fbb62f feat: app rate limit (#5844) před 11 měsíci
migrations 9622fbb62f feat: app rate limit (#5844) před 11 měsíci
models 9622fbb62f feat: app rate limit (#5844) před 11 měsíci
schedule 6c4e6bf1d6 Feat/dify rag (#2528) před 1 rokem
services 9622fbb62f feat: app rate limit (#5844) před 11 měsíci
tasks 00b4cc3cd4 feat: implement forgot password feature (#5534) před 11 měsíci
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) před 11 měsíci
tests 7c70eb87bc feat: support AnalyticDB vector store (#5586) před 11 měsíci
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) před 11 měsíci
.env.example 9622fbb62f feat: app rate limit (#5844) před 11 měsíci
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) před 11 měsíci
README.md 2d6624cf9e typo: Update README.md (#5987) před 11 měsíci
app.py d7f75d17cc Chore/remove-unused-code (#5917) před 11 měsíci
commands.py 7c70eb87bc feat: support AnalyticDB vector store (#5586) před 11 měsíci
poetry.lock f9d00e0498 chore: use poetry for linter tools installation and bump Ruff from 0.4 to 0.5 (#6081) před 11 měsíci
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) před 1 rokem
pyproject.toml f9d00e0498 chore: use poetry for linter tools installation and bump Ruff from 0.4 to 0.5 (#6081) před 11 měsíci

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
    
    secret_key=$(openssl rand -base64 42)
    sed -i '' "/^SECRET_KEY=/c\\
    SECRET_KEY=${secret_key}" .env
    
  3. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies

    poetry env use 3.10
    poetry install
    

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend

    poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
    
  2. Start Dify web service.

  3. Setup your application by visiting http://localhost:3000...

  4. If you need to debug local async processing, please start the worker service.

    poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion
    

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    poetry install --with dev
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    cd ../
    poetry run -C api bash dev/pytest/pytest_all_tests.sh