Jyong 988aa4b5da update clean_unused_datasets_task timedelta (#6324) před 1 rokem
..
configs eabfd84ceb bump to 0.6.14 (#6294) před 1 rokem
constants 6ef401a9f0 feat:add tts-streaming config and future (#5492) před 1 rokem
controllers 46a5294d94 feat(backend): support import DSL from URL (#6287) před 1 rokem
core d66d7146a3 chore:update azure GA version 2024-06-01 (#6307) před 1 rokem
docker cb09dbef66 feat: correctly delete applications using Celery workers (#5787) před 1 rokem
events d320d1468d Feat/delete file when clean document (#5882) před 1 rokem
extensions 988aa4b5da update clean_unused_datasets_task timedelta (#6324) před 1 rokem
fields 9622fbb62f feat: app rate limit (#5844) před 1 rokem
libs 9622fbb62f feat: app rate limit (#5844) před 1 rokem
migrations 9622fbb62f feat: app rate limit (#5844) před 1 rokem
models 9622fbb62f feat: app rate limit (#5844) před 1 rokem
schedule 1df71ec64d refactor(api): switch to dify_config with Pydantic in controllers and schedule (#6237) před 1 rokem
services d320d1468d Feat/delete file when clean document (#5882) před 1 rokem
tasks d320d1468d Feat/delete file when clean document (#5882) před 1 rokem
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) před 1 rokem
tests 63e34e5227 feat: support MyScale vector database (#6092) před 1 rokem
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) před 1 rokem
.env.example 63e34e5227 feat: support MyScale vector database (#6092) před 1 rokem
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) před 1 rokem
README.md 2d6624cf9e typo: Update README.md (#5987) před 1 rokem
app.py d7f75d17cc Chore/remove-unused-code (#5917) před 1 rokem
commands.py 7c70eb87bc feat: support AnalyticDB vector store (#5586) před 1 rokem
poetry.lock c5d06e7943 dep: bump Pydantic from 2.7 to 2.8 (#6273) před 1 rokem
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) před 1 rokem
pyproject.toml c5d06e7943 dep: bump Pydantic from 2.7 to 2.8 (#6273) před 1 rokem

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
    
    secret_key=$(openssl rand -base64 42)
    sed -i '' "/^SECRET_KEY=/c\\
    SECRET_KEY=${secret_key}" .env
    
  3. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies

    poetry env use 3.10
    poetry install
    

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend

    poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
    
  2. Start Dify web service.

  3. Setup your application by visiting http://localhost:3000...

  4. If you need to debug local async processing, please start the worker service.

    poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion
    

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    poetry install --with dev
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    cd ../
    poetry run -C api bash dev/pytest/pytest_all_tests.sh