indexing_runner.py 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773
  1. import datetime
  2. import json
  3. import logging
  4. import re
  5. import threading
  6. import time
  7. import uuid
  8. from typing import Optional, List, cast
  9. from flask import current_app, Flask
  10. from flask_login import current_user
  11. from langchain.schema import Document
  12. from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
  13. from core.data_loader.file_extractor import FileExtractor
  14. from core.data_loader.loader.notion import NotionLoader
  15. from core.docstore.dataset_docstore import DatesetDocumentStore
  16. from core.generator.llm_generator import LLMGenerator
  17. from core.index.index import IndexBuilder
  18. from core.model_providers.error import ProviderTokenNotInitError
  19. from core.model_providers.model_factory import ModelFactory
  20. from core.model_providers.models.entity.message import MessageType
  21. from core.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter
  22. from extensions.ext_database import db
  23. from extensions.ext_redis import redis_client
  24. from extensions.ext_storage import storage
  25. from libs import helper
  26. from models.dataset import Document as DatasetDocument
  27. from models.dataset import Dataset, DocumentSegment, DatasetProcessRule
  28. from models.model import UploadFile
  29. from models.source import DataSourceBinding
  30. class IndexingRunner:
  31. def __init__(self):
  32. self.storage = storage
  33. def run(self, dataset_documents: List[DatasetDocument]):
  34. """Run the indexing process."""
  35. for dataset_document in dataset_documents:
  36. try:
  37. # get dataset
  38. dataset = Dataset.query.filter_by(
  39. id=dataset_document.dataset_id
  40. ).first()
  41. if not dataset:
  42. raise ValueError("no dataset found")
  43. # load file
  44. text_docs = self._load_data(dataset_document)
  45. # get the process rule
  46. processing_rule = db.session.query(DatasetProcessRule). \
  47. filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
  48. first()
  49. # get splitter
  50. splitter = self._get_splitter(processing_rule)
  51. # split to documents
  52. documents = self._step_split(
  53. text_docs=text_docs,
  54. splitter=splitter,
  55. dataset=dataset,
  56. dataset_document=dataset_document,
  57. processing_rule=processing_rule
  58. )
  59. self._build_index(
  60. dataset=dataset,
  61. dataset_document=dataset_document,
  62. documents=documents
  63. )
  64. except DocumentIsPausedException:
  65. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  66. except ProviderTokenNotInitError as e:
  67. dataset_document.indexing_status = 'error'
  68. dataset_document.error = str(e.description)
  69. dataset_document.stopped_at = datetime.datetime.utcnow()
  70. db.session.commit()
  71. except Exception as e:
  72. logging.exception("consume document failed")
  73. dataset_document.indexing_status = 'error'
  74. dataset_document.error = str(e)
  75. dataset_document.stopped_at = datetime.datetime.utcnow()
  76. db.session.commit()
  77. def format_split_text(self, text):
  78. regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q|$)"
  79. matches = re.findall(regex, text, re.MULTILINE)
  80. result = []
  81. for match in matches:
  82. q = match[0]
  83. a = match[1]
  84. if q and a:
  85. result.append({
  86. "question": q,
  87. "answer": re.sub(r"\n\s*", "\n", a.strip())
  88. })
  89. return result
  90. def run_in_splitting_status(self, dataset_document: DatasetDocument):
  91. """Run the indexing process when the index_status is splitting."""
  92. try:
  93. # get dataset
  94. dataset = Dataset.query.filter_by(
  95. id=dataset_document.dataset_id
  96. ).first()
  97. if not dataset:
  98. raise ValueError("no dataset found")
  99. # get exist document_segment list and delete
  100. document_segments = DocumentSegment.query.filter_by(
  101. dataset_id=dataset.id,
  102. document_id=dataset_document.id
  103. ).all()
  104. db.session.delete(document_segments)
  105. db.session.commit()
  106. # load file
  107. text_docs = self._load_data(dataset_document)
  108. # get the process rule
  109. processing_rule = db.session.query(DatasetProcessRule). \
  110. filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
  111. first()
  112. # get splitter
  113. splitter = self._get_splitter(processing_rule)
  114. # split to documents
  115. documents = self._step_split(
  116. text_docs=text_docs,
  117. splitter=splitter,
  118. dataset=dataset,
  119. dataset_document=dataset_document,
  120. processing_rule=processing_rule
  121. )
  122. # build index
  123. self._build_index(
  124. dataset=dataset,
  125. dataset_document=dataset_document,
  126. documents=documents
  127. )
  128. except DocumentIsPausedException:
  129. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  130. except ProviderTokenNotInitError as e:
  131. dataset_document.indexing_status = 'error'
  132. dataset_document.error = str(e.description)
  133. dataset_document.stopped_at = datetime.datetime.utcnow()
  134. db.session.commit()
  135. except Exception as e:
  136. logging.exception("consume document failed")
  137. dataset_document.indexing_status = 'error'
  138. dataset_document.error = str(e)
  139. dataset_document.stopped_at = datetime.datetime.utcnow()
  140. db.session.commit()
  141. def run_in_indexing_status(self, dataset_document: DatasetDocument):
  142. """Run the indexing process when the index_status is indexing."""
  143. try:
  144. # get dataset
  145. dataset = Dataset.query.filter_by(
  146. id=dataset_document.dataset_id
  147. ).first()
  148. if not dataset:
  149. raise ValueError("no dataset found")
  150. # get exist document_segment list and delete
  151. document_segments = DocumentSegment.query.filter_by(
  152. dataset_id=dataset.id,
  153. document_id=dataset_document.id
  154. ).all()
  155. documents = []
  156. if document_segments:
  157. for document_segment in document_segments:
  158. # transform segment to node
  159. if document_segment.status != "completed":
  160. document = Document(
  161. page_content=document_segment.content,
  162. metadata={
  163. "doc_id": document_segment.index_node_id,
  164. "doc_hash": document_segment.index_node_hash,
  165. "document_id": document_segment.document_id,
  166. "dataset_id": document_segment.dataset_id,
  167. }
  168. )
  169. documents.append(document)
  170. # build index
  171. self._build_index(
  172. dataset=dataset,
  173. dataset_document=dataset_document,
  174. documents=documents
  175. )
  176. except DocumentIsPausedException:
  177. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  178. except ProviderTokenNotInitError as e:
  179. dataset_document.indexing_status = 'error'
  180. dataset_document.error = str(e.description)
  181. dataset_document.stopped_at = datetime.datetime.utcnow()
  182. db.session.commit()
  183. except Exception as e:
  184. logging.exception("consume document failed")
  185. dataset_document.indexing_status = 'error'
  186. dataset_document.error = str(e)
  187. dataset_document.stopped_at = datetime.datetime.utcnow()
  188. db.session.commit()
  189. def file_indexing_estimate(self, tenant_id: str, file_details: List[UploadFile], tmp_processing_rule: dict,
  190. doc_form: str = None, doc_language: str = 'English', dataset_id: str = None) -> dict:
  191. """
  192. Estimate the indexing for the document.
  193. """
  194. if dataset_id:
  195. dataset = Dataset.query.filter_by(
  196. id=dataset_id
  197. ).first()
  198. if not dataset:
  199. raise ValueError('Dataset not found.')
  200. embedding_model = ModelFactory.get_embedding_model(
  201. tenant_id=dataset.tenant_id,
  202. model_provider_name=dataset.embedding_model_provider,
  203. model_name=dataset.embedding_model
  204. )
  205. else:
  206. embedding_model = ModelFactory.get_embedding_model(
  207. tenant_id=tenant_id
  208. )
  209. tokens = 0
  210. preview_texts = []
  211. total_segments = 0
  212. for file_detail in file_details:
  213. # load data from file
  214. text_docs = FileExtractor.load(file_detail)
  215. processing_rule = DatasetProcessRule(
  216. mode=tmp_processing_rule["mode"],
  217. rules=json.dumps(tmp_processing_rule["rules"])
  218. )
  219. # get splitter
  220. splitter = self._get_splitter(processing_rule)
  221. # split to documents
  222. documents = self._split_to_documents_for_estimate(
  223. text_docs=text_docs,
  224. splitter=splitter,
  225. processing_rule=processing_rule
  226. )
  227. total_segments += len(documents)
  228. for document in documents:
  229. if len(preview_texts) < 5:
  230. preview_texts.append(document.page_content)
  231. tokens += embedding_model.get_num_tokens(self.filter_string(document.page_content))
  232. if doc_form and doc_form == 'qa_model':
  233. text_generation_model = ModelFactory.get_text_generation_model(
  234. tenant_id=tenant_id
  235. )
  236. if len(preview_texts) > 0:
  237. # qa model document
  238. response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0], doc_language)
  239. document_qa_list = self.format_split_text(response)
  240. return {
  241. "total_segments": total_segments * 20,
  242. "tokens": total_segments * 2000,
  243. "total_price": '{:f}'.format(
  244. text_generation_model.calc_tokens_price(total_segments * 2000, MessageType.HUMAN)),
  245. "currency": embedding_model.get_currency(),
  246. "qa_preview": document_qa_list,
  247. "preview": preview_texts
  248. }
  249. return {
  250. "total_segments": total_segments,
  251. "tokens": tokens,
  252. "total_price": '{:f}'.format(embedding_model.calc_tokens_price(tokens)),
  253. "currency": embedding_model.get_currency(),
  254. "preview": preview_texts
  255. }
  256. def notion_indexing_estimate(self, tenant_id: str, notion_info_list: list, tmp_processing_rule: dict,
  257. doc_form: str = None, doc_language: str = 'English', dataset_id: str = None) -> dict:
  258. """
  259. Estimate the indexing for the document.
  260. """
  261. if dataset_id:
  262. dataset = Dataset.query.filter_by(
  263. id=dataset_id
  264. ).first()
  265. if not dataset:
  266. raise ValueError('Dataset not found.')
  267. embedding_model = ModelFactory.get_embedding_model(
  268. tenant_id=dataset.tenant_id,
  269. model_provider_name=dataset.embedding_model_provider,
  270. model_name=dataset.embedding_model
  271. )
  272. else:
  273. embedding_model = ModelFactory.get_embedding_model(
  274. tenant_id=tenant_id
  275. )
  276. # load data from notion
  277. tokens = 0
  278. preview_texts = []
  279. total_segments = 0
  280. for notion_info in notion_info_list:
  281. workspace_id = notion_info['workspace_id']
  282. data_source_binding = DataSourceBinding.query.filter(
  283. db.and_(
  284. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  285. DataSourceBinding.provider == 'notion',
  286. DataSourceBinding.disabled == False,
  287. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  288. )
  289. ).first()
  290. if not data_source_binding:
  291. raise ValueError('Data source binding not found.')
  292. for page in notion_info['pages']:
  293. loader = NotionLoader(
  294. notion_access_token=data_source_binding.access_token,
  295. notion_workspace_id=workspace_id,
  296. notion_obj_id=page['page_id'],
  297. notion_page_type=page['type']
  298. )
  299. documents = loader.load()
  300. processing_rule = DatasetProcessRule(
  301. mode=tmp_processing_rule["mode"],
  302. rules=json.dumps(tmp_processing_rule["rules"])
  303. )
  304. # get splitter
  305. splitter = self._get_splitter(processing_rule)
  306. # split to documents
  307. documents = self._split_to_documents_for_estimate(
  308. text_docs=documents,
  309. splitter=splitter,
  310. processing_rule=processing_rule
  311. )
  312. total_segments += len(documents)
  313. for document in documents:
  314. if len(preview_texts) < 5:
  315. preview_texts.append(document.page_content)
  316. tokens += embedding_model.get_num_tokens(document.page_content)
  317. if doc_form and doc_form == 'qa_model':
  318. text_generation_model = ModelFactory.get_text_generation_model(
  319. tenant_id=tenant_id
  320. )
  321. if len(preview_texts) > 0:
  322. # qa model document
  323. response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0], doc_language)
  324. document_qa_list = self.format_split_text(response)
  325. return {
  326. "total_segments": total_segments * 20,
  327. "tokens": total_segments * 2000,
  328. "total_price": '{:f}'.format(
  329. text_generation_model.calc_tokens_price(total_segments * 2000, MessageType.HUMAN)),
  330. "currency": embedding_model.get_currency(),
  331. "qa_preview": document_qa_list,
  332. "preview": preview_texts
  333. }
  334. return {
  335. "total_segments": total_segments,
  336. "tokens": tokens,
  337. "total_price": '{:f}'.format(embedding_model.calc_tokens_price(tokens)),
  338. "currency": embedding_model.get_currency(),
  339. "preview": preview_texts
  340. }
  341. def _load_data(self, dataset_document: DatasetDocument) -> List[Document]:
  342. # load file
  343. if dataset_document.data_source_type not in ["upload_file", "notion_import"]:
  344. return []
  345. data_source_info = dataset_document.data_source_info_dict
  346. text_docs = []
  347. if dataset_document.data_source_type == 'upload_file':
  348. if not data_source_info or 'upload_file_id' not in data_source_info:
  349. raise ValueError("no upload file found")
  350. file_detail = db.session.query(UploadFile). \
  351. filter(UploadFile.id == data_source_info['upload_file_id']). \
  352. one_or_none()
  353. text_docs = FileExtractor.load(file_detail)
  354. elif dataset_document.data_source_type == 'notion_import':
  355. loader = NotionLoader.from_document(dataset_document)
  356. text_docs = loader.load()
  357. # update document status to splitting
  358. self._update_document_index_status(
  359. document_id=dataset_document.id,
  360. after_indexing_status="splitting",
  361. extra_update_params={
  362. DatasetDocument.word_count: sum([len(text_doc.page_content) for text_doc in text_docs]),
  363. DatasetDocument.parsing_completed_at: datetime.datetime.utcnow()
  364. }
  365. )
  366. # replace doc id to document model id
  367. text_docs = cast(List[Document], text_docs)
  368. for text_doc in text_docs:
  369. # remove invalid symbol
  370. text_doc.page_content = self.filter_string(text_doc.page_content)
  371. text_doc.metadata['document_id'] = dataset_document.id
  372. text_doc.metadata['dataset_id'] = dataset_document.dataset_id
  373. return text_docs
  374. def filter_string(self, text):
  375. text = re.sub(r'<\|', '<', text)
  376. text = re.sub(r'\|>', '>', text)
  377. text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\x80-\xFF]', '', text)
  378. return text
  379. def _get_splitter(self, processing_rule: DatasetProcessRule) -> TextSplitter:
  380. """
  381. Get the NodeParser object according to the processing rule.
  382. """
  383. if processing_rule.mode == "custom":
  384. # The user-defined segmentation rule
  385. rules = json.loads(processing_rule.rules)
  386. segmentation = rules["segmentation"]
  387. if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000:
  388. raise ValueError("Custom segment length should be between 50 and 1000.")
  389. separator = segmentation["separator"]
  390. if separator:
  391. separator = separator.replace('\\n', '\n')
  392. character_splitter = FixedRecursiveCharacterTextSplitter.from_tiktoken_encoder(
  393. chunk_size=segmentation["max_tokens"],
  394. chunk_overlap=0,
  395. fixed_separator=separator,
  396. separators=["\n\n", "。", ".", " ", ""]
  397. )
  398. else:
  399. # Automatic segmentation
  400. character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
  401. chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
  402. chunk_overlap=0,
  403. separators=["\n\n", "。", ".", " ", ""]
  404. )
  405. return character_splitter
  406. def _step_split(self, text_docs: List[Document], splitter: TextSplitter,
  407. dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \
  408. -> List[Document]:
  409. """
  410. Split the text documents into documents and save them to the document segment.
  411. """
  412. documents = self._split_to_documents(
  413. text_docs=text_docs,
  414. splitter=splitter,
  415. processing_rule=processing_rule,
  416. tenant_id=dataset.tenant_id,
  417. document_form=dataset_document.doc_form,
  418. document_language=dataset_document.doc_language
  419. )
  420. # save node to document segment
  421. doc_store = DatesetDocumentStore(
  422. dataset=dataset,
  423. user_id=dataset_document.created_by,
  424. document_id=dataset_document.id
  425. )
  426. # add document segments
  427. doc_store.add_documents(documents)
  428. # update document status to indexing
  429. cur_time = datetime.datetime.utcnow()
  430. self._update_document_index_status(
  431. document_id=dataset_document.id,
  432. after_indexing_status="indexing",
  433. extra_update_params={
  434. DatasetDocument.cleaning_completed_at: cur_time,
  435. DatasetDocument.splitting_completed_at: cur_time,
  436. }
  437. )
  438. # update segment status to indexing
  439. self._update_segments_by_document(
  440. dataset_document_id=dataset_document.id,
  441. update_params={
  442. DocumentSegment.status: "indexing",
  443. DocumentSegment.indexing_at: datetime.datetime.utcnow()
  444. }
  445. )
  446. return documents
  447. def _split_to_documents(self, text_docs: List[Document], splitter: TextSplitter,
  448. processing_rule: DatasetProcessRule, tenant_id: str,
  449. document_form: str, document_language: str) -> List[Document]:
  450. """
  451. Split the text documents into nodes.
  452. """
  453. all_documents = []
  454. all_qa_documents = []
  455. for text_doc in text_docs:
  456. # document clean
  457. document_text = self._document_clean(text_doc.page_content, processing_rule)
  458. text_doc.page_content = document_text
  459. # parse document to nodes
  460. documents = splitter.split_documents([text_doc])
  461. split_documents = []
  462. for document_node in documents:
  463. doc_id = str(uuid.uuid4())
  464. hash = helper.generate_text_hash(document_node.page_content)
  465. document_node.metadata['doc_id'] = doc_id
  466. document_node.metadata['doc_hash'] = hash
  467. split_documents.append(document_node)
  468. all_documents.extend(split_documents)
  469. # processing qa document
  470. if document_form == 'qa_model':
  471. for i in range(0, len(all_documents), 10):
  472. threads = []
  473. sub_documents = all_documents[i:i + 10]
  474. for doc in sub_documents:
  475. document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={
  476. 'flask_app': current_app._get_current_object(),
  477. 'tenant_id': tenant_id, 'document_node': doc, 'all_qa_documents': all_qa_documents,
  478. 'document_language': document_language})
  479. threads.append(document_format_thread)
  480. document_format_thread.start()
  481. for thread in threads:
  482. thread.join()
  483. return all_qa_documents
  484. return all_documents
  485. def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
  486. format_documents = []
  487. if document_node.page_content is None or not document_node.page_content.strip():
  488. return
  489. with flask_app.app_context():
  490. try:
  491. # qa model document
  492. response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language)
  493. document_qa_list = self.format_split_text(response)
  494. qa_documents = []
  495. for result in document_qa_list:
  496. qa_document = Document(page_content=result['question'], metadata=document_node.metadata.copy())
  497. doc_id = str(uuid.uuid4())
  498. hash = helper.generate_text_hash(result['question'])
  499. qa_document.metadata['answer'] = result['answer']
  500. qa_document.metadata['doc_id'] = doc_id
  501. qa_document.metadata['doc_hash'] = hash
  502. qa_documents.append(qa_document)
  503. format_documents.extend(qa_documents)
  504. except Exception as e:
  505. logging.exception(e)
  506. all_qa_documents.extend(format_documents)
  507. def _split_to_documents_for_estimate(self, text_docs: List[Document], splitter: TextSplitter,
  508. processing_rule: DatasetProcessRule) -> List[Document]:
  509. """
  510. Split the text documents into nodes.
  511. """
  512. all_documents = []
  513. for text_doc in text_docs:
  514. # document clean
  515. document_text = self._document_clean(text_doc.page_content, processing_rule)
  516. text_doc.page_content = document_text
  517. # parse document to nodes
  518. documents = splitter.split_documents([text_doc])
  519. split_documents = []
  520. for document in documents:
  521. if document.page_content is None or not document.page_content.strip():
  522. continue
  523. doc_id = str(uuid.uuid4())
  524. hash = helper.generate_text_hash(document.page_content)
  525. document.metadata['doc_id'] = doc_id
  526. document.metadata['doc_hash'] = hash
  527. split_documents.append(document)
  528. all_documents.extend(split_documents)
  529. return all_documents
  530. def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
  531. """
  532. Clean the document text according to the processing rules.
  533. """
  534. if processing_rule.mode == "automatic":
  535. rules = DatasetProcessRule.AUTOMATIC_RULES
  536. else:
  537. rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
  538. if 'pre_processing_rules' in rules:
  539. pre_processing_rules = rules["pre_processing_rules"]
  540. for pre_processing_rule in pre_processing_rules:
  541. if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
  542. # Remove extra spaces
  543. pattern = r'\n{3,}'
  544. text = re.sub(pattern, '\n\n', text)
  545. pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
  546. text = re.sub(pattern, ' ', text)
  547. elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
  548. # Remove email
  549. pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
  550. text = re.sub(pattern, '', text)
  551. # Remove URL
  552. pattern = r'https?://[^\s]+'
  553. text = re.sub(pattern, '', text)
  554. return text
  555. def format_split_text(self, text):
  556. regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q|$)" # 匹配Q和A的正则表达式
  557. matches = re.findall(regex, text, re.MULTILINE) # 获取所有匹配到的结果
  558. result = [] # 存储最终的结果
  559. for match in matches:
  560. q = match[0]
  561. a = match[1]
  562. if q and a:
  563. # 如果Q和A都存在,就将其添加到结果中
  564. result.append({
  565. "question": q,
  566. "answer": re.sub(r"\n\s*", "\n", a.strip())
  567. })
  568. return result
  569. def _build_index(self, dataset: Dataset, dataset_document: DatasetDocument, documents: List[Document]) -> None:
  570. """
  571. Build the index for the document.
  572. """
  573. vector_index = IndexBuilder.get_index(dataset, 'high_quality')
  574. keyword_table_index = IndexBuilder.get_index(dataset, 'economy')
  575. embedding_model = ModelFactory.get_embedding_model(
  576. tenant_id=dataset.tenant_id,
  577. model_provider_name=dataset.embedding_model_provider,
  578. model_name=dataset.embedding_model
  579. )
  580. # chunk nodes by chunk size
  581. indexing_start_at = time.perf_counter()
  582. tokens = 0
  583. chunk_size = 100
  584. for i in range(0, len(documents), chunk_size):
  585. # check document is paused
  586. self._check_document_paused_status(dataset_document.id)
  587. chunk_documents = documents[i:i + chunk_size]
  588. tokens += sum(
  589. embedding_model.get_num_tokens(document.page_content)
  590. for document in chunk_documents
  591. )
  592. # save vector index
  593. if vector_index:
  594. vector_index.add_texts(chunk_documents)
  595. # save keyword index
  596. keyword_table_index.add_texts(chunk_documents)
  597. document_ids = [document.metadata['doc_id'] for document in chunk_documents]
  598. db.session.query(DocumentSegment).filter(
  599. DocumentSegment.document_id == dataset_document.id,
  600. DocumentSegment.index_node_id.in_(document_ids),
  601. DocumentSegment.status == "indexing"
  602. ).update({
  603. DocumentSegment.status: "completed",
  604. DocumentSegment.enabled: True,
  605. DocumentSegment.completed_at: datetime.datetime.utcnow()
  606. })
  607. db.session.commit()
  608. indexing_end_at = time.perf_counter()
  609. # update document status to completed
  610. self._update_document_index_status(
  611. document_id=dataset_document.id,
  612. after_indexing_status="completed",
  613. extra_update_params={
  614. DatasetDocument.tokens: tokens,
  615. DatasetDocument.completed_at: datetime.datetime.utcnow(),
  616. DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
  617. }
  618. )
  619. def _check_document_paused_status(self, document_id: str):
  620. indexing_cache_key = 'document_{}_is_paused'.format(document_id)
  621. result = redis_client.get(indexing_cache_key)
  622. if result:
  623. raise DocumentIsPausedException()
  624. def _update_document_index_status(self, document_id: str, after_indexing_status: str,
  625. extra_update_params: Optional[dict] = None) -> None:
  626. """
  627. Update the document indexing status.
  628. """
  629. count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
  630. if count > 0:
  631. raise DocumentIsPausedException()
  632. update_params = {
  633. DatasetDocument.indexing_status: after_indexing_status
  634. }
  635. if extra_update_params:
  636. update_params.update(extra_update_params)
  637. DatasetDocument.query.filter_by(id=document_id).update(update_params)
  638. db.session.commit()
  639. def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None:
  640. """
  641. Update the document segment by document id.
  642. """
  643. DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
  644. db.session.commit()
  645. def batch_add_segments(self, segments: List[DocumentSegment], dataset: Dataset):
  646. """
  647. Batch add segments index processing
  648. """
  649. documents = []
  650. for segment in segments:
  651. document = Document(
  652. page_content=segment.content,
  653. metadata={
  654. "doc_id": segment.index_node_id,
  655. "doc_hash": segment.index_node_hash,
  656. "document_id": segment.document_id,
  657. "dataset_id": segment.dataset_id,
  658. }
  659. )
  660. documents.append(document)
  661. # save vector index
  662. index = IndexBuilder.get_index(dataset, 'high_quality')
  663. if index:
  664. index.add_texts(documents, duplicate_check=True)
  665. # save keyword index
  666. index = IndexBuilder.get_index(dataset, 'economy')
  667. if index:
  668. index.add_texts(documents)
  669. class DocumentIsPausedException(Exception):
  670. pass