base.py 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175
  1. import json
  2. import logging
  3. from abc import abstractmethod
  4. from typing import List, Any, cast
  5. from langchain.embeddings.base import Embeddings
  6. from langchain.schema import Document, BaseRetriever
  7. from langchain.vectorstores import VectorStore
  8. from weaviate import UnexpectedStatusCodeException
  9. from core.index.base import BaseIndex
  10. from extensions.ext_database import db
  11. from models.dataset import Dataset, DocumentSegment
  12. from models.dataset import Document as DatasetDocument
  13. class BaseVectorIndex(BaseIndex):
  14. def __init__(self, dataset: Dataset, embeddings: Embeddings):
  15. super().__init__(dataset)
  16. self._embeddings = embeddings
  17. self._vector_store = None
  18. def get_type(self) -> str:
  19. raise NotImplementedError
  20. @abstractmethod
  21. def get_index_name(self, dataset: Dataset) -> str:
  22. raise NotImplementedError
  23. @abstractmethod
  24. def to_index_struct(self) -> dict:
  25. raise NotImplementedError
  26. @abstractmethod
  27. def _get_vector_store(self) -> VectorStore:
  28. raise NotImplementedError
  29. @abstractmethod
  30. def _get_vector_store_class(self) -> type:
  31. raise NotImplementedError
  32. def search(
  33. self, query: str,
  34. **kwargs: Any
  35. ) -> List[Document]:
  36. vector_store = self._get_vector_store()
  37. vector_store = cast(self._get_vector_store_class(), vector_store)
  38. search_type = kwargs.get('search_type') if kwargs.get('search_type') else 'similarity'
  39. search_kwargs = kwargs.get('search_kwargs') if kwargs.get('search_kwargs') else {}
  40. if search_type == 'similarity_score_threshold':
  41. score_threshold = search_kwargs.get("score_threshold")
  42. if (score_threshold is None) or (not isinstance(score_threshold, float)):
  43. search_kwargs['score_threshold'] = .0
  44. docs_with_similarity = vector_store.similarity_search_with_relevance_scores(
  45. query, **search_kwargs
  46. )
  47. docs = []
  48. for doc, similarity in docs_with_similarity:
  49. doc.metadata['score'] = similarity
  50. docs.append(doc)
  51. return docs
  52. # similarity k
  53. # mmr k, fetch_k, lambda_mult
  54. # similarity_score_threshold k
  55. return vector_store.as_retriever(
  56. search_type=search_type,
  57. search_kwargs=search_kwargs
  58. ).get_relevant_documents(query)
  59. def get_retriever(self, **kwargs: Any) -> BaseRetriever:
  60. vector_store = self._get_vector_store()
  61. vector_store = cast(self._get_vector_store_class(), vector_store)
  62. return vector_store.as_retriever(**kwargs)
  63. def add_texts(self, texts: list[Document], **kwargs):
  64. if self._is_origin():
  65. self.recreate_dataset(self.dataset)
  66. vector_store = self._get_vector_store()
  67. vector_store = cast(self._get_vector_store_class(), vector_store)
  68. if kwargs.get('duplicate_check', False):
  69. texts = self._filter_duplicate_texts(texts)
  70. uuids = self._get_uuids(texts)
  71. vector_store.add_documents(texts, uuids=uuids)
  72. def text_exists(self, id: str) -> bool:
  73. vector_store = self._get_vector_store()
  74. vector_store = cast(self._get_vector_store_class(), vector_store)
  75. return vector_store.text_exists(id)
  76. def delete_by_ids(self, ids: list[str]) -> None:
  77. if self._is_origin():
  78. self.recreate_dataset(self.dataset)
  79. return
  80. vector_store = self._get_vector_store()
  81. vector_store = cast(self._get_vector_store_class(), vector_store)
  82. for node_id in ids:
  83. vector_store.del_text(node_id)
  84. def delete(self) -> None:
  85. vector_store = self._get_vector_store()
  86. vector_store = cast(self._get_vector_store_class(), vector_store)
  87. vector_store.delete()
  88. def _is_origin(self):
  89. return False
  90. def recreate_dataset(self, dataset: Dataset):
  91. logging.info(f"Recreating dataset {dataset.id}")
  92. try:
  93. self.delete()
  94. except UnexpectedStatusCodeException as e:
  95. if e.status_code != 400:
  96. # 400 means index not exists
  97. raise e
  98. dataset_documents = db.session.query(DatasetDocument).filter(
  99. DatasetDocument.dataset_id == dataset.id,
  100. DatasetDocument.indexing_status == 'completed',
  101. DatasetDocument.enabled == True,
  102. DatasetDocument.archived == False,
  103. ).all()
  104. documents = []
  105. for dataset_document in dataset_documents:
  106. segments = db.session.query(DocumentSegment).filter(
  107. DocumentSegment.document_id == dataset_document.id,
  108. DocumentSegment.status == 'completed',
  109. DocumentSegment.enabled == True
  110. ).all()
  111. for segment in segments:
  112. document = Document(
  113. page_content=segment.content,
  114. metadata={
  115. "doc_id": segment.index_node_id,
  116. "doc_hash": segment.index_node_hash,
  117. "document_id": segment.document_id,
  118. "dataset_id": segment.dataset_id,
  119. }
  120. )
  121. documents.append(document)
  122. origin_index_struct = self.dataset.index_struct[:]
  123. self.dataset.index_struct = None
  124. if documents:
  125. try:
  126. self.create(documents)
  127. except Exception as e:
  128. self.dataset.index_struct = origin_index_struct
  129. raise e
  130. dataset.index_struct = json.dumps(self.to_index_struct())
  131. db.session.commit()
  132. self.dataset = dataset
  133. logging.info(f"Dataset {dataset.id} recreate successfully.")