123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- import logging
- import time
- from typing import Any, Dict, List, Union
- from langchain.callbacks.base import BaseCallbackHandler
- from langchain.schema import LLMResult, BaseMessage
- from core.callback_handler.entity.llm_message import LLMMessage
- from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException
- from core.model_providers.models.entity.message import to_prompt_messages, PromptMessage
- from core.model_providers.models.llm.base import BaseLLM
- class LLMCallbackHandler(BaseCallbackHandler):
- raise_error: bool = True
- def __init__(self, model_instance: BaseLLM,
- conversation_message_task: ConversationMessageTask):
- self.model_instance = model_instance
- self.llm_message = LLMMessage()
- self.start_at = None
- self.conversation_message_task = conversation_message_task
- @property
- def always_verbose(self) -> bool:
- """Whether to call verbose callbacks even if verbose is False."""
- return True
- def on_chat_model_start(
- self,
- serialized: Dict[str, Any],
- messages: List[List[BaseMessage]],
- **kwargs: Any
- ) -> Any:
- self.start_at = time.perf_counter()
- real_prompts = []
- for message in messages[0]:
- if message.type == 'human':
- role = 'user'
- elif message.type == 'ai':
- role = 'assistant'
- else:
- role = 'system'
- real_prompts.append({
- "role": role,
- "text": message.content
- })
- self.llm_message.prompt = real_prompts
- self.llm_message.prompt_tokens = self.model_instance.get_num_tokens(to_prompt_messages(messages[0]))
- def on_llm_start(
- self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
- ) -> None:
- self.start_at = time.perf_counter()
- self.llm_message.prompt = [{
- "role": 'user',
- "text": prompts[0]
- }]
- self.llm_message.prompt_tokens = self.model_instance.get_num_tokens([PromptMessage(content=prompts[0])])
- def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
- end_at = time.perf_counter()
- self.llm_message.latency = end_at - self.start_at
- if not self.conversation_message_task.streaming:
- self.conversation_message_task.append_message_text(response.generations[0][0].text)
- self.llm_message.completion = response.generations[0][0].text
- self.llm_message.completion_tokens = self.model_instance.get_num_tokens([PromptMessage(content=self.llm_message.completion)])
- self.conversation_message_task.save_message(self.llm_message)
- def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
- try:
- self.conversation_message_task.append_message_text(token)
- except ConversationTaskStoppedException as ex:
- self.on_llm_error(error=ex)
- raise ex
- self.llm_message.completion += token
- def on_llm_error(
- self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
- ) -> None:
- """Do nothing."""
- if isinstance(error, ConversationTaskStoppedException):
- if self.conversation_message_task.streaming:
- end_at = time.perf_counter()
- self.llm_message.latency = end_at - self.start_at
- self.llm_message.completion_tokens = self.model_instance.get_num_tokens(
- [PromptMessage(content=self.llm_message.completion)]
- )
- self.conversation_message_task.save_message(llm_message=self.llm_message, by_stopped=True)
- else:
- logging.debug("on_llm_error: %s", error)
|