llm_callback_handler.py 3.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899
  1. import logging
  2. import time
  3. from typing import Any, Dict, List, Union
  4. from langchain.callbacks.base import BaseCallbackHandler
  5. from langchain.schema import LLMResult, BaseMessage
  6. from core.callback_handler.entity.llm_message import LLMMessage
  7. from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException
  8. from core.model_providers.models.entity.message import to_prompt_messages, PromptMessage
  9. from core.model_providers.models.llm.base import BaseLLM
  10. class LLMCallbackHandler(BaseCallbackHandler):
  11. raise_error: bool = True
  12. def __init__(self, model_instance: BaseLLM,
  13. conversation_message_task: ConversationMessageTask):
  14. self.model_instance = model_instance
  15. self.llm_message = LLMMessage()
  16. self.start_at = None
  17. self.conversation_message_task = conversation_message_task
  18. @property
  19. def always_verbose(self) -> bool:
  20. """Whether to call verbose callbacks even if verbose is False."""
  21. return True
  22. def on_chat_model_start(
  23. self,
  24. serialized: Dict[str, Any],
  25. messages: List[List[BaseMessage]],
  26. **kwargs: Any
  27. ) -> Any:
  28. self.start_at = time.perf_counter()
  29. real_prompts = []
  30. for message in messages[0]:
  31. if message.type == 'human':
  32. role = 'user'
  33. elif message.type == 'ai':
  34. role = 'assistant'
  35. else:
  36. role = 'system'
  37. real_prompts.append({
  38. "role": role,
  39. "text": message.content
  40. })
  41. self.llm_message.prompt = real_prompts
  42. self.llm_message.prompt_tokens = self.model_instance.get_num_tokens(to_prompt_messages(messages[0]))
  43. def on_llm_start(
  44. self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
  45. ) -> None:
  46. self.start_at = time.perf_counter()
  47. self.llm_message.prompt = [{
  48. "role": 'user',
  49. "text": prompts[0]
  50. }]
  51. self.llm_message.prompt_tokens = self.model_instance.get_num_tokens([PromptMessage(content=prompts[0])])
  52. def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
  53. end_at = time.perf_counter()
  54. self.llm_message.latency = end_at - self.start_at
  55. if not self.conversation_message_task.streaming:
  56. self.conversation_message_task.append_message_text(response.generations[0][0].text)
  57. self.llm_message.completion = response.generations[0][0].text
  58. self.llm_message.completion_tokens = self.model_instance.get_num_tokens([PromptMessage(content=self.llm_message.completion)])
  59. self.conversation_message_task.save_message(self.llm_message)
  60. def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
  61. try:
  62. self.conversation_message_task.append_message_text(token)
  63. except ConversationTaskStoppedException as ex:
  64. self.on_llm_error(error=ex)
  65. raise ex
  66. self.llm_message.completion += token
  67. def on_llm_error(
  68. self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
  69. ) -> None:
  70. """Do nothing."""
  71. if isinstance(error, ConversationTaskStoppedException):
  72. if self.conversation_message_task.streaming:
  73. end_at = time.perf_counter()
  74. self.llm_message.latency = end_at - self.start_at
  75. self.llm_message.completion_tokens = self.model_instance.get_num_tokens(
  76. [PromptMessage(content=self.llm_message.completion)]
  77. )
  78. self.conversation_message_task.save_message(llm_message=self.llm_message, by_stopped=True)
  79. else:
  80. logging.debug("on_llm_error: %s", error)