dataset_retrieval.py 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181
  1. from typing import Optional, cast
  2. from langchain.tools import BaseTool
  3. from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
  4. from core.entities.agent_entities import PlanningStrategy
  5. from core.entities.application_entities import DatasetEntity, DatasetRetrieveConfigEntity, InvokeFrom, ModelConfigEntity
  6. from core.features.dataset_retrieval.agent_based_dataset_executor import AgentConfiguration, AgentExecutor
  7. from core.memory.token_buffer_memory import TokenBufferMemory
  8. from core.model_runtime.entities.model_entities import ModelFeature
  9. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  10. from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
  11. from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
  12. from extensions.ext_database import db
  13. from models.dataset import Dataset
  14. class DatasetRetrievalFeature:
  15. def retrieve(self, tenant_id: str,
  16. model_config: ModelConfigEntity,
  17. config: DatasetEntity,
  18. query: str,
  19. invoke_from: InvokeFrom,
  20. show_retrieve_source: bool,
  21. hit_callback: DatasetIndexToolCallbackHandler,
  22. memory: Optional[TokenBufferMemory] = None) -> Optional[str]:
  23. """
  24. Retrieve dataset.
  25. :param tenant_id: tenant id
  26. :param model_config: model config
  27. :param config: dataset config
  28. :param query: query
  29. :param invoke_from: invoke from
  30. :param show_retrieve_source: show retrieve source
  31. :param hit_callback: hit callback
  32. :param memory: memory
  33. :return:
  34. """
  35. dataset_ids = config.dataset_ids
  36. retrieve_config = config.retrieve_config
  37. # check model is support tool calling
  38. model_type_instance = model_config.provider_model_bundle.model_type_instance
  39. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  40. # get model schema
  41. model_schema = model_type_instance.get_model_schema(
  42. model=model_config.model,
  43. credentials=model_config.credentials
  44. )
  45. if not model_schema:
  46. return None
  47. planning_strategy = PlanningStrategy.REACT_ROUTER
  48. features = model_schema.features
  49. if features:
  50. if ModelFeature.TOOL_CALL in features \
  51. or ModelFeature.MULTI_TOOL_CALL in features:
  52. planning_strategy = PlanningStrategy.ROUTER
  53. dataset_retriever_tools = self.to_dataset_retriever_tool(
  54. tenant_id=tenant_id,
  55. dataset_ids=dataset_ids,
  56. retrieve_config=retrieve_config,
  57. return_resource=show_retrieve_source,
  58. invoke_from=invoke_from,
  59. hit_callback=hit_callback
  60. )
  61. if len(dataset_retriever_tools) == 0:
  62. return None
  63. agent_configuration = AgentConfiguration(
  64. strategy=planning_strategy,
  65. model_config=model_config,
  66. tools=dataset_retriever_tools,
  67. memory=memory,
  68. max_iterations=10,
  69. max_execution_time=400.0,
  70. early_stopping_method="generate"
  71. )
  72. agent_executor = AgentExecutor(agent_configuration)
  73. should_use_agent = agent_executor.should_use_agent(query)
  74. if not should_use_agent:
  75. return None
  76. result = agent_executor.run(query)
  77. return result.output
  78. def to_dataset_retriever_tool(self, tenant_id: str,
  79. dataset_ids: list[str],
  80. retrieve_config: DatasetRetrieveConfigEntity,
  81. return_resource: bool,
  82. invoke_from: InvokeFrom,
  83. hit_callback: DatasetIndexToolCallbackHandler) \
  84. -> Optional[list[BaseTool]]:
  85. """
  86. A dataset tool is a tool that can be used to retrieve information from a dataset
  87. :param tenant_id: tenant id
  88. :param dataset_ids: dataset ids
  89. :param retrieve_config: retrieve config
  90. :param return_resource: return resource
  91. :param invoke_from: invoke from
  92. :param hit_callback: hit callback
  93. """
  94. tools = []
  95. available_datasets = []
  96. for dataset_id in dataset_ids:
  97. # get dataset from dataset id
  98. dataset = db.session.query(Dataset).filter(
  99. Dataset.tenant_id == tenant_id,
  100. Dataset.id == dataset_id
  101. ).first()
  102. # pass if dataset is not available
  103. if not dataset:
  104. continue
  105. # pass if dataset is not available
  106. if (dataset and dataset.available_document_count == 0
  107. and dataset.available_document_count == 0):
  108. continue
  109. available_datasets.append(dataset)
  110. if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
  111. # get retrieval model config
  112. default_retrieval_model = {
  113. 'search_method': 'semantic_search',
  114. 'reranking_enable': False,
  115. 'reranking_model': {
  116. 'reranking_provider_name': '',
  117. 'reranking_model_name': ''
  118. },
  119. 'top_k': 2,
  120. 'score_threshold_enabled': False
  121. }
  122. for dataset in available_datasets:
  123. retrieval_model_config = dataset.retrieval_model \
  124. if dataset.retrieval_model else default_retrieval_model
  125. # get top k
  126. top_k = retrieval_model_config['top_k']
  127. # get score threshold
  128. score_threshold = None
  129. score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
  130. if score_threshold_enabled:
  131. score_threshold = retrieval_model_config.get("score_threshold")
  132. tool = DatasetRetrieverTool.from_dataset(
  133. dataset=dataset,
  134. top_k=top_k,
  135. score_threshold=score_threshold,
  136. hit_callbacks=[hit_callback],
  137. return_resource=return_resource,
  138. retriever_from=invoke_from.to_source()
  139. )
  140. tools.append(tool)
  141. elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
  142. tool = DatasetMultiRetrieverTool.from_dataset(
  143. dataset_ids=[dataset.id for dataset in available_datasets],
  144. tenant_id=tenant_id,
  145. top_k=retrieve_config.top_k or 2,
  146. score_threshold=retrieve_config.score_threshold,
  147. hit_callbacks=[hit_callback],
  148. return_resource=return_resource,
  149. retriever_from=invoke_from.to_source(),
  150. reranking_provider_name=retrieve_config.reranking_model.get('reranking_provider_name'),
  151. reranking_model_name=retrieve_config.reranking_model.get('reranking_model_name')
  152. )
  153. tools.append(tool)
  154. return tools