dataset_retriever_tool.py 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105
  1. import re
  2. from typing import Type
  3. from flask import current_app
  4. from langchain.embeddings import OpenAIEmbeddings
  5. from langchain.tools import BaseTool
  6. from pydantic import Field, BaseModel
  7. from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
  8. from core.embedding.cached_embedding import CacheEmbedding
  9. from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
  10. from core.index.vector_index.vector_index import VectorIndex
  11. from core.llm.llm_builder import LLMBuilder
  12. from extensions.ext_database import db
  13. from models.dataset import Dataset
  14. class DatasetRetrieverToolInput(BaseModel):
  15. dataset_id: str = Field(..., description="ID of dataset to be queried. MUST be UUID format.")
  16. query: str = Field(..., description="Query for the dataset to be used to retrieve the dataset.")
  17. class DatasetRetrieverTool(BaseTool):
  18. """Tool for querying a Dataset."""
  19. name: str = "dataset"
  20. args_schema: Type[BaseModel] = DatasetRetrieverToolInput
  21. description: str = "use this to retrieve a dataset. "
  22. tenant_id: str
  23. dataset_id: str
  24. k: int = 3
  25. @classmethod
  26. def from_dataset(cls, dataset: Dataset, **kwargs):
  27. description = dataset.description.replace('\n', '').replace('\r', '')
  28. if not description:
  29. description = 'useful for when you want to answer queries about the ' + dataset.name
  30. description += '\nID of dataset MUST be ' + dataset.id
  31. return cls(
  32. tenant_id=dataset.tenant_id,
  33. dataset_id=dataset.id,
  34. description=description,
  35. **kwargs
  36. )
  37. def _run(self, dataset_id: str, query: str) -> str:
  38. pattern = r'\b[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}\b'
  39. match = re.search(pattern, dataset_id, re.IGNORECASE)
  40. if match:
  41. dataset_id = match.group()
  42. dataset = db.session.query(Dataset).filter(
  43. Dataset.tenant_id == self.tenant_id,
  44. Dataset.id == dataset_id
  45. ).first()
  46. if not dataset:
  47. return f'[{self.name} failed to find dataset with id {dataset_id}.]'
  48. if dataset.indexing_technique == "economy":
  49. # use keyword table query
  50. kw_table_index = KeywordTableIndex(
  51. dataset=dataset,
  52. config=KeywordTableConfig(
  53. max_keywords_per_chunk=5
  54. )
  55. )
  56. documents = kw_table_index.search(query, search_kwargs={'k': self.k})
  57. else:
  58. model_credentials = LLMBuilder.get_model_credentials(
  59. tenant_id=dataset.tenant_id,
  60. model_provider=LLMBuilder.get_default_provider(dataset.tenant_id, 'text-embedding-ada-002'),
  61. model_name='text-embedding-ada-002'
  62. )
  63. embeddings = CacheEmbedding(OpenAIEmbeddings(
  64. **model_credentials
  65. ))
  66. vector_index = VectorIndex(
  67. dataset=dataset,
  68. config=current_app.config,
  69. embeddings=embeddings
  70. )
  71. if self.k > 0:
  72. documents = vector_index.search(
  73. query,
  74. search_type='similarity',
  75. search_kwargs={
  76. 'k': self.k
  77. }
  78. )
  79. else:
  80. documents = []
  81. hit_callback = DatasetIndexToolCallbackHandler(dataset.id)
  82. hit_callback.on_tool_end(documents)
  83. return str("\n".join([document.page_content for document in documents]))
  84. async def _arun(self, tool_input: str) -> str:
  85. raise NotImplementedError()