orchestrator_rule_parser.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287
  1. import math
  2. from typing import Optional
  3. from langchain import WikipediaAPIWrapper
  4. from langchain.callbacks.manager import Callbacks
  5. from langchain.chat_models import ChatOpenAI
  6. from langchain.memory.chat_memory import BaseChatMemory
  7. from langchain.tools import BaseTool, Tool, WikipediaQueryRun
  8. from pydantic import BaseModel, Field
  9. from core.agent.agent_executor import AgentExecutor, PlanningStrategy, AgentConfiguration
  10. from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
  11. from core.callback_handler.dataset_tool_callback_handler import DatasetToolCallbackHandler
  12. from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
  13. from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
  14. from core.chain.sensitive_word_avoidance_chain import SensitiveWordAvoidanceChain
  15. from core.conversation_message_task import ConversationMessageTask
  16. from core.llm.llm_builder import LLMBuilder
  17. from core.tool.dataset_retriever_tool import DatasetRetrieverTool
  18. from core.tool.provider.serpapi_provider import SerpAPIToolProvider
  19. from core.tool.serpapi_wrapper import OptimizedSerpAPIWrapper, OptimizedSerpAPIInput
  20. from core.tool.web_reader_tool import WebReaderTool
  21. from extensions.ext_database import db
  22. from models.dataset import Dataset, DatasetProcessRule
  23. from models.model import AppModelConfig
  24. class OrchestratorRuleParser:
  25. """Parse the orchestrator rule to entities."""
  26. def __init__(self, tenant_id: str, app_model_config: AppModelConfig):
  27. self.tenant_id = tenant_id
  28. self.app_model_config = app_model_config
  29. self.agent_summary_model_name = "gpt-3.5-turbo-16k"
  30. self.dataset_retrieve_model_name = "gpt-3.5-turbo"
  31. def to_agent_executor(self, conversation_message_task: ConversationMessageTask, memory: Optional[BaseChatMemory],
  32. rest_tokens: int, chain_callback: MainChainGatherCallbackHandler) \
  33. -> Optional[AgentExecutor]:
  34. if not self.app_model_config.agent_mode_dict:
  35. return None
  36. agent_mode_config = self.app_model_config.agent_mode_dict
  37. model_dict = self.app_model_config.model_dict
  38. chain = None
  39. if agent_mode_config and agent_mode_config.get('enabled'):
  40. tool_configs = agent_mode_config.get('tools', [])
  41. agent_model_name = model_dict.get('name', 'gpt-4')
  42. # add agent callback to record agent thoughts
  43. agent_callback = AgentLoopGatherCallbackHandler(
  44. model_name=agent_model_name,
  45. conversation_message_task=conversation_message_task
  46. )
  47. chain_callback.agent_callback = agent_callback
  48. agent_llm = LLMBuilder.to_llm(
  49. tenant_id=self.tenant_id,
  50. model_name=agent_model_name,
  51. temperature=0,
  52. max_tokens=1500,
  53. callbacks=[agent_callback, DifyStdOutCallbackHandler()]
  54. )
  55. planning_strategy = PlanningStrategy(agent_mode_config.get('strategy', 'router'))
  56. # only OpenAI chat model (include Azure) support function call, use ReACT instead
  57. if not isinstance(agent_llm, ChatOpenAI) \
  58. and planning_strategy in [PlanningStrategy.FUNCTION_CALL, PlanningStrategy.MULTI_FUNCTION_CALL]:
  59. planning_strategy = PlanningStrategy.REACT
  60. summary_llm = LLMBuilder.to_llm(
  61. tenant_id=self.tenant_id,
  62. model_name=self.agent_summary_model_name,
  63. temperature=0,
  64. max_tokens=500,
  65. callbacks=[DifyStdOutCallbackHandler()]
  66. )
  67. tools = self.to_tools(
  68. tool_configs=tool_configs,
  69. conversation_message_task=conversation_message_task,
  70. model_name=self.agent_summary_model_name,
  71. rest_tokens=rest_tokens,
  72. callbacks=[agent_callback, DifyStdOutCallbackHandler()]
  73. )
  74. if len(tools) == 0:
  75. return None
  76. dataset_llm = LLMBuilder.to_llm(
  77. tenant_id=self.tenant_id,
  78. model_name=self.dataset_retrieve_model_name,
  79. temperature=0,
  80. max_tokens=500,
  81. callbacks=[DifyStdOutCallbackHandler()]
  82. )
  83. agent_configuration = AgentConfiguration(
  84. strategy=planning_strategy,
  85. llm=agent_llm,
  86. tools=tools,
  87. summary_llm=summary_llm,
  88. dataset_llm=dataset_llm,
  89. memory=memory,
  90. callbacks=[chain_callback, agent_callback],
  91. max_iterations=10,
  92. max_execution_time=400.0,
  93. early_stopping_method="generate"
  94. )
  95. return AgentExecutor(agent_configuration)
  96. return chain
  97. def to_sensitive_word_avoidance_chain(self, callbacks: Callbacks = None, **kwargs) \
  98. -> Optional[SensitiveWordAvoidanceChain]:
  99. """
  100. Convert app sensitive word avoidance config to chain
  101. :param kwargs:
  102. :return:
  103. """
  104. if not self.app_model_config.sensitive_word_avoidance_dict:
  105. return None
  106. sensitive_word_avoidance_config = self.app_model_config.sensitive_word_avoidance_dict
  107. sensitive_words = sensitive_word_avoidance_config.get("words", "")
  108. if sensitive_word_avoidance_config.get("enabled", False) and sensitive_words:
  109. return SensitiveWordAvoidanceChain(
  110. sensitive_words=sensitive_words.split(","),
  111. canned_response=sensitive_word_avoidance_config.get("canned_response", ''),
  112. output_key="sensitive_word_avoidance_output",
  113. callbacks=callbacks,
  114. **kwargs
  115. )
  116. return None
  117. def to_tools(self, tool_configs: list, conversation_message_task: ConversationMessageTask,
  118. model_name: str, rest_tokens: int, callbacks: Callbacks = None) -> list[BaseTool]:
  119. """
  120. Convert app agent tool configs to tools
  121. :param rest_tokens:
  122. :param tool_configs: app agent tool configs
  123. :param model_name:
  124. :param conversation_message_task:
  125. :param callbacks:
  126. :return:
  127. """
  128. tools = []
  129. for tool_config in tool_configs:
  130. tool_type = list(tool_config.keys())[0]
  131. tool_val = list(tool_config.values())[0]
  132. if not tool_val.get("enabled") or tool_val.get("enabled") is not True:
  133. continue
  134. tool = None
  135. if tool_type == "dataset":
  136. tool = self.to_dataset_retriever_tool(tool_val, conversation_message_task, rest_tokens)
  137. elif tool_type == "web_reader":
  138. tool = self.to_web_reader_tool(model_name)
  139. elif tool_type == "google_search":
  140. tool = self.to_google_search_tool()
  141. elif tool_type == "wikipedia":
  142. tool = self.to_wikipedia_tool()
  143. if tool:
  144. tool.callbacks.extend(callbacks)
  145. tools.append(tool)
  146. return tools
  147. def to_dataset_retriever_tool(self, tool_config: dict, conversation_message_task: ConversationMessageTask,
  148. rest_tokens: int) \
  149. -> Optional[BaseTool]:
  150. """
  151. A dataset tool is a tool that can be used to retrieve information from a dataset
  152. :param rest_tokens:
  153. :param tool_config:
  154. :param conversation_message_task:
  155. :return:
  156. """
  157. # get dataset from dataset id
  158. dataset = db.session.query(Dataset).filter(
  159. Dataset.tenant_id == self.tenant_id,
  160. Dataset.id == tool_config.get("id")
  161. ).first()
  162. if dataset and dataset.available_document_count == 0 and dataset.available_document_count == 0:
  163. return None
  164. k = self._dynamic_calc_retrieve_k(dataset, rest_tokens)
  165. tool = DatasetRetrieverTool.from_dataset(
  166. dataset=dataset,
  167. k=k,
  168. callbacks=[DatasetToolCallbackHandler(conversation_message_task)]
  169. )
  170. return tool
  171. def to_web_reader_tool(self, model_name: str) -> Optional[BaseTool]:
  172. """
  173. A tool for reading web pages
  174. :return:
  175. """
  176. summary_llm = LLMBuilder.to_llm(
  177. tenant_id=self.tenant_id,
  178. model_name=model_name,
  179. temperature=0,
  180. max_tokens=500,
  181. callbacks=[DifyStdOutCallbackHandler()]
  182. )
  183. tool = WebReaderTool(
  184. llm=summary_llm,
  185. max_chunk_length=4000,
  186. continue_reading=True,
  187. callbacks=[DifyStdOutCallbackHandler()]
  188. )
  189. return tool
  190. def to_google_search_tool(self) -> Optional[BaseTool]:
  191. tool_provider = SerpAPIToolProvider(tenant_id=self.tenant_id)
  192. func_kwargs = tool_provider.credentials_to_func_kwargs()
  193. if not func_kwargs:
  194. return None
  195. tool = Tool(
  196. name="google_search",
  197. description="A tool for performing a Google search and extracting snippets and webpages "
  198. "when you need to search for something you don't know or when your information "
  199. "is not up to date."
  200. "Input should be a search query.",
  201. func=OptimizedSerpAPIWrapper(**func_kwargs).run,
  202. args_schema=OptimizedSerpAPIInput,
  203. callbacks=[DifyStdOutCallbackHandler()]
  204. )
  205. return tool
  206. def to_wikipedia_tool(self) -> Optional[BaseTool]:
  207. class WikipediaInput(BaseModel):
  208. query: str = Field(..., description="search query.")
  209. return WikipediaQueryRun(
  210. name="wikipedia",
  211. api_wrapper=WikipediaAPIWrapper(doc_content_chars_max=4000),
  212. args_schema=WikipediaInput,
  213. callbacks=[DifyStdOutCallbackHandler()]
  214. )
  215. @classmethod
  216. def _dynamic_calc_retrieve_k(cls, dataset: Dataset, rest_tokens: int) -> int:
  217. DEFAULT_K = 2
  218. CONTEXT_TOKENS_PERCENT = 0.3
  219. processing_rule = dataset.latest_process_rule
  220. if not processing_rule:
  221. return DEFAULT_K
  222. if processing_rule.mode == "custom":
  223. rules = processing_rule.rules_dict
  224. if not rules:
  225. return DEFAULT_K
  226. segmentation = rules["segmentation"]
  227. segment_max_tokens = segmentation["max_tokens"]
  228. else:
  229. segment_max_tokens = DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens']
  230. # when rest_tokens is less than default context tokens
  231. if rest_tokens < segment_max_tokens * DEFAULT_K:
  232. return rest_tokens // segment_max_tokens
  233. context_limit_tokens = math.floor(rest_tokens * CONTEXT_TOKENS_PERCENT)
  234. # when context_limit_tokens is less than default context tokens, use default_k
  235. if context_limit_tokens <= segment_max_tokens * DEFAULT_K:
  236. return DEFAULT_K
  237. # Expand the k value when there's still some room left in the 30% rest tokens space
  238. return context_limit_tokens // segment_max_tokens