| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229 | import osfrom collections.abc import Generatorimport pytestfrom core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDeltafrom core.model_runtime.entities.message_entities import (    AssistantPromptMessage,    PromptMessageTool,    SystemPromptMessage,    UserPromptMessage,)from core.model_runtime.entities.model_entities import AIModelEntityfrom core.model_runtime.errors.validate import CredentialsValidateFailedErrorfrom core.model_runtime.model_providers.chatglm.llm.llm import ChatGLMLargeLanguageModelfrom tests.integration_tests.model_runtime.__mock.openai import setup_openai_mockdef test_predefined_models():    model = ChatGLMLargeLanguageModel()    model_schemas = model.predefined_models()    assert len(model_schemas) >= 1    assert isinstance(model_schemas[0], AIModelEntity)@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)def test_validate_credentials_for_chat_model(setup_openai_mock):    model = ChatGLMLargeLanguageModel()    with pytest.raises(CredentialsValidateFailedError):        model.validate_credentials(model="chatglm2-6b", credentials={"api_base": "invalid_key"})    model.validate_credentials(model="chatglm2-6b", credentials={"api_base": os.environ.get("CHATGLM_API_BASE")})@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)def test_invoke_model(setup_openai_mock):    model = ChatGLMLargeLanguageModel()    response = model.invoke(        model="chatglm2-6b",        credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},        prompt_messages=[            SystemPromptMessage(                content="You are a helpful AI assistant.",            ),            UserPromptMessage(content="Hello World!"),        ],        model_parameters={            "temperature": 0.7,            "top_p": 1.0,        },        stop=["you"],        user="abc-123",        stream=False,    )    assert isinstance(response, LLMResult)    assert len(response.message.content) > 0    assert response.usage.total_tokens > 0@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)def test_invoke_stream_model(setup_openai_mock):    model = ChatGLMLargeLanguageModel()    response = model.invoke(        model="chatglm2-6b",        credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},        prompt_messages=[            SystemPromptMessage(                content="You are a helpful AI assistant.",            ),            UserPromptMessage(content="Hello World!"),        ],        model_parameters={            "temperature": 0.7,            "top_p": 1.0,        },        stop=["you"],        stream=True,        user="abc-123",    )    assert isinstance(response, Generator)    for chunk in response:        assert isinstance(chunk, LLMResultChunk)        assert isinstance(chunk.delta, LLMResultChunkDelta)        assert isinstance(chunk.delta.message, AssistantPromptMessage)        assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)def test_invoke_stream_model_with_functions(setup_openai_mock):    model = ChatGLMLargeLanguageModel()    response = model.invoke(        model="chatglm3-6b",        credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},        prompt_messages=[            SystemPromptMessage(                content="你是一个天气机器人,你不知道今天的天气怎么样,你需要通过调用一个函数来获取天气信息。"            ),            UserPromptMessage(content="波士顿天气如何?"),        ],        model_parameters={            "temperature": 0,            "top_p": 1.0,        },        stop=["you"],        user="abc-123",        stream=True,        tools=[            PromptMessageTool(                name="get_current_weather",                description="Get the current weather in a given location",                parameters={                    "type": "object",                    "properties": {                        "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},                        "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},                    },                    "required": ["location"],                },            )        ],    )    assert isinstance(response, Generator)    call: LLMResultChunk = None    chunks = []    for chunk in response:        chunks.append(chunk)        assert isinstance(chunk, LLMResultChunk)        assert isinstance(chunk.delta, LLMResultChunkDelta)        assert isinstance(chunk.delta.message, AssistantPromptMessage)        assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True        if chunk.delta.message.tool_calls and len(chunk.delta.message.tool_calls) > 0:            call = chunk            break    assert call is not None    assert call.delta.message.tool_calls[0].function.name == "get_current_weather"@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)def test_invoke_model_with_functions(setup_openai_mock):    model = ChatGLMLargeLanguageModel()    response = model.invoke(        model="chatglm3-6b",        credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},        prompt_messages=[UserPromptMessage(content="What is the weather like in San Francisco?")],        model_parameters={            "temperature": 0.7,            "top_p": 1.0,        },        stop=["you"],        user="abc-123",        stream=False,        tools=[            PromptMessageTool(                name="get_current_weather",                description="Get the current weather in a given location",                parameters={                    "type": "object",                    "properties": {                        "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},                        "unit": {"type": "string", "enum": ["c", "f"]},                    },                    "required": ["location"],                },            )        ],    )    assert isinstance(response, LLMResult)    assert len(response.message.content) > 0    assert response.usage.total_tokens > 0    assert response.message.tool_calls[0].function.name == "get_current_weather"def test_get_num_tokens():    model = ChatGLMLargeLanguageModel()    num_tokens = model.get_num_tokens(        model="chatglm2-6b",        credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},        prompt_messages=[            SystemPromptMessage(                content="You are a helpful AI assistant.",            ),            UserPromptMessage(content="Hello World!"),        ],        tools=[            PromptMessageTool(                name="get_current_weather",                description="Get the current weather in a given location",                parameters={                    "type": "object",                    "properties": {                        "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},                        "unit": {"type": "string", "enum": ["c", "f"]},                    },                    "required": ["location"],                },            )        ],    )    assert isinstance(num_tokens, int)    assert num_tokens == 77    num_tokens = model.get_num_tokens(        model="chatglm2-6b",        credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},        prompt_messages=[            SystemPromptMessage(                content="You are a helpful AI assistant.",            ),            UserPromptMessage(content="Hello World!"),        ],    )    assert isinstance(num_tokens, int)    assert num_tokens == 21
 |