| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628 | import jsonfrom typing import Optionalfrom core.app.app_config.entities import (    DatasetEntity,    DatasetRetrieveConfigEntity,    EasyUIBasedAppConfig,    ExternalDataVariableEntity,    ModelConfigEntity,    PromptTemplateEntity,    VariableEntity,)from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfigManagerfrom core.app.apps.chat.app_config_manager import ChatAppConfigManagerfrom core.app.apps.completion.app_config_manager import CompletionAppConfigManagerfrom core.file.file_obj import FileExtraConfigfrom core.helper import encrypterfrom core.model_runtime.entities.llm_entities import LLMModefrom core.model_runtime.utils.encoders import jsonable_encoderfrom core.prompt.simple_prompt_transform import SimplePromptTransformfrom core.workflow.entities.node_entities import NodeTypefrom events.app_event import app_was_createdfrom extensions.ext_database import dbfrom models.account import Accountfrom models.api_based_extension import APIBasedExtension, APIBasedExtensionPointfrom models.model import App, AppMode, AppModelConfigfrom models.workflow import Workflow, WorkflowTypeclass WorkflowConverter:    """    App Convert to Workflow Mode    """    def convert_to_workflow(        self, app_model: App, account: Account, name: str, icon_type: str, icon: str, icon_background: str    ):        """        Convert app to workflow        - basic mode of chatbot app        - expert mode of chatbot app        - completion app        :param app_model: App instance        :param account: Account        :param name: new app name        :param icon: new app icon        :param icon_type: new app icon type        :param icon_background: new app icon background        :return: new App instance        """        # convert app model config        if not app_model.app_model_config:            raise ValueError("App model config is required")        workflow = self.convert_app_model_config_to_workflow(            app_model=app_model, app_model_config=app_model.app_model_config, account_id=account.id        )        # create new app        new_app = App()        new_app.tenant_id = app_model.tenant_id        new_app.name = name or app_model.name + "(workflow)"        new_app.mode = AppMode.ADVANCED_CHAT.value if app_model.mode == AppMode.CHAT.value else AppMode.WORKFLOW.value        new_app.icon_type = icon_type or app_model.icon_type        new_app.icon = icon or app_model.icon        new_app.icon_background = icon_background or app_model.icon_background        new_app.enable_site = app_model.enable_site        new_app.enable_api = app_model.enable_api        new_app.api_rpm = app_model.api_rpm        new_app.api_rph = app_model.api_rph        new_app.is_demo = False        new_app.is_public = app_model.is_public        new_app.created_by = account.id        new_app.updated_by = account.id        db.session.add(new_app)        db.session.flush()        db.session.commit()        workflow.app_id = new_app.id        db.session.commit()        app_was_created.send(new_app, account=account)        return new_app    def convert_app_model_config_to_workflow(self, app_model: App, app_model_config: AppModelConfig, account_id: str):        """        Convert app model config to workflow mode        :param app_model: App instance        :param app_model_config: AppModelConfig instance        :param account_id: Account ID        """        # get new app mode        new_app_mode = self._get_new_app_mode(app_model)        # convert app model config        app_config = self._convert_to_app_config(app_model=app_model, app_model_config=app_model_config)        # init workflow graph        graph = {"nodes": [], "edges": []}        # Convert list:        # - variables -> start        # - model_config -> llm        # - prompt_template -> llm        # - file_upload -> llm        # - external_data_variables -> http-request        # - dataset -> knowledge-retrieval        # - show_retrieve_source -> knowledge-retrieval        # convert to start node        start_node = self._convert_to_start_node(variables=app_config.variables)        graph["nodes"].append(start_node)        # convert to http request node        external_data_variable_node_mapping = {}        if app_config.external_data_variables:            http_request_nodes, external_data_variable_node_mapping = self._convert_to_http_request_node(                app_model=app_model,                variables=app_config.variables,                external_data_variables=app_config.external_data_variables,            )            for http_request_node in http_request_nodes:                graph = self._append_node(graph, http_request_node)        # convert to knowledge retrieval node        if app_config.dataset:            knowledge_retrieval_node = self._convert_to_knowledge_retrieval_node(                new_app_mode=new_app_mode, dataset_config=app_config.dataset, model_config=app_config.model            )            if knowledge_retrieval_node:                graph = self._append_node(graph, knowledge_retrieval_node)        # convert to llm node        llm_node = self._convert_to_llm_node(            original_app_mode=AppMode.value_of(app_model.mode),            new_app_mode=new_app_mode,            graph=graph,            model_config=app_config.model,            prompt_template=app_config.prompt_template,            file_upload=app_config.additional_features.file_upload,            external_data_variable_node_mapping=external_data_variable_node_mapping,        )        graph = self._append_node(graph, llm_node)        if new_app_mode == AppMode.WORKFLOW:            # convert to end node by app mode            end_node = self._convert_to_end_node()            graph = self._append_node(graph, end_node)        else:            answer_node = self._convert_to_answer_node()            graph = self._append_node(graph, answer_node)        app_model_config_dict = app_config.app_model_config_dict        # features        if new_app_mode == AppMode.ADVANCED_CHAT:            features = {                "opening_statement": app_model_config_dict.get("opening_statement"),                "suggested_questions": app_model_config_dict.get("suggested_questions"),                "suggested_questions_after_answer": app_model_config_dict.get("suggested_questions_after_answer"),                "speech_to_text": app_model_config_dict.get("speech_to_text"),                "text_to_speech": app_model_config_dict.get("text_to_speech"),                "file_upload": app_model_config_dict.get("file_upload"),                "sensitive_word_avoidance": app_model_config_dict.get("sensitive_word_avoidance"),                "retriever_resource": app_model_config_dict.get("retriever_resource"),            }        else:            features = {                "text_to_speech": app_model_config_dict.get("text_to_speech"),                "file_upload": app_model_config_dict.get("file_upload"),                "sensitive_word_avoidance": app_model_config_dict.get("sensitive_word_avoidance"),            }        # create workflow record        workflow = Workflow(            tenant_id=app_model.tenant_id,            app_id=app_model.id,            type=WorkflowType.from_app_mode(new_app_mode).value,            version="draft",            graph=json.dumps(graph),            features=json.dumps(features),            created_by=account_id,            environment_variables=[],            conversation_variables=[],        )        db.session.add(workflow)        db.session.commit()        return workflow    def _convert_to_app_config(self, app_model: App, app_model_config: AppModelConfig) -> EasyUIBasedAppConfig:        app_mode = AppMode.value_of(app_model.mode)        if app_mode == AppMode.AGENT_CHAT or app_model.is_agent:            app_model.mode = AppMode.AGENT_CHAT.value            app_config = AgentChatAppConfigManager.get_app_config(                app_model=app_model, app_model_config=app_model_config            )        elif app_mode == AppMode.CHAT:            app_config = ChatAppConfigManager.get_app_config(app_model=app_model, app_model_config=app_model_config)        elif app_mode == AppMode.COMPLETION:            app_config = CompletionAppConfigManager.get_app_config(                app_model=app_model, app_model_config=app_model_config            )        else:            raise ValueError("Invalid app mode")        return app_config    def _convert_to_start_node(self, variables: list[VariableEntity]) -> dict:        """        Convert to Start Node        :param variables: list of variables        :return:        """        return {            "id": "start",            "position": None,            "data": {                "title": "START",                "type": NodeType.START.value,                "variables": [jsonable_encoder(v) for v in variables],            },        }    def _convert_to_http_request_node(        self, app_model: App, variables: list[VariableEntity], external_data_variables: list[ExternalDataVariableEntity]    ) -> tuple[list[dict], dict[str, str]]:        """        Convert API Based Extension to HTTP Request Node        :param app_model: App instance        :param variables: list of variables        :param external_data_variables: list of external data variables        :return:        """        index = 1        nodes = []        external_data_variable_node_mapping = {}        tenant_id = app_model.tenant_id        for external_data_variable in external_data_variables:            tool_type = external_data_variable.type            if tool_type != "api":                continue            tool_variable = external_data_variable.variable            tool_config = external_data_variable.config            # get params from config            api_based_extension_id = tool_config.get("api_based_extension_id")            if not api_based_extension_id:                continue            # get api_based_extension            api_based_extension = self._get_api_based_extension(                tenant_id=tenant_id, api_based_extension_id=api_based_extension_id            )            # decrypt api_key            api_key = encrypter.decrypt_token(tenant_id=tenant_id, token=api_based_extension.api_key)            inputs = {}            for v in variables:                inputs[v.variable] = "{{#start." + v.variable + "#}}"            request_body = {                "point": APIBasedExtensionPoint.APP_EXTERNAL_DATA_TOOL_QUERY.value,                "params": {                    "app_id": app_model.id,                    "tool_variable": tool_variable,                    "inputs": inputs,                    "query": "{{#sys.query#}}" if app_model.mode == AppMode.CHAT.value else "",                },            }            request_body_json = json.dumps(request_body)            request_body_json = request_body_json.replace(r"\{\{", "{{").replace(r"\}\}", "}}")            http_request_node = {                "id": f"http_request_{index}",                "position": None,                "data": {                    "title": f"HTTP REQUEST {api_based_extension.name}",                    "type": NodeType.HTTP_REQUEST.value,                    "method": "post",                    "url": api_based_extension.api_endpoint,                    "authorization": {"type": "api-key", "config": {"type": "bearer", "api_key": api_key}},                    "headers": "",                    "params": "",                    "body": {"type": "json", "data": request_body_json},                },            }            nodes.append(http_request_node)            # append code node for response body parsing            code_node = {                "id": f"code_{index}",                "position": None,                "data": {                    "title": f"Parse {api_based_extension.name} Response",                    "type": NodeType.CODE.value,                    "variables": [{"variable": "response_json", "value_selector": [http_request_node["id"], "body"]}],                    "code_language": "python3",                    "code": "import json\n\ndef main(response_json: str) -> str:\n    response_body = json.loads("                    'response_json)\n    return {\n        "result": response_body["result"]\n    }',                    "outputs": {"result": {"type": "string"}},                },            }            nodes.append(code_node)            external_data_variable_node_mapping[external_data_variable.variable] = code_node["id"]            index += 1        return nodes, external_data_variable_node_mapping    def _convert_to_knowledge_retrieval_node(        self, new_app_mode: AppMode, dataset_config: DatasetEntity, model_config: ModelConfigEntity    ) -> Optional[dict]:        """        Convert datasets to Knowledge Retrieval Node        :param new_app_mode: new app mode        :param dataset_config: dataset        :param model_config: model config        :return:        """        retrieve_config = dataset_config.retrieve_config        if new_app_mode == AppMode.ADVANCED_CHAT:            query_variable_selector = ["sys", "query"]        elif retrieve_config.query_variable:            # fetch query variable            query_variable_selector = ["start", retrieve_config.query_variable]        else:            return None        return {            "id": "knowledge_retrieval",            "position": None,            "data": {                "title": "KNOWLEDGE RETRIEVAL",                "type": NodeType.KNOWLEDGE_RETRIEVAL.value,                "query_variable_selector": query_variable_selector,                "dataset_ids": dataset_config.dataset_ids,                "retrieval_mode": retrieve_config.retrieve_strategy.value,                "single_retrieval_config": {                    "model": {                        "provider": model_config.provider,                        "name": model_config.model,                        "mode": model_config.mode,                        "completion_params": {                            **model_config.parameters,                            "stop": model_config.stop,                        },                    }                }                if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE                else None,                "multiple_retrieval_config": {                    "top_k": retrieve_config.top_k,                    "score_threshold": retrieve_config.score_threshold,                    "reranking_model": retrieve_config.reranking_model,                }                if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE                else None,            },        }    def _convert_to_llm_node(        self,        original_app_mode: AppMode,        new_app_mode: AppMode,        graph: dict,        model_config: ModelConfigEntity,        prompt_template: PromptTemplateEntity,        file_upload: Optional[FileExtraConfig] = None,        external_data_variable_node_mapping: dict[str, str] | None = None,    ) -> dict:        """        Convert to LLM Node        :param original_app_mode: original app mode        :param new_app_mode: new app mode        :param graph: graph        :param model_config: model config        :param prompt_template: prompt template        :param file_upload: file upload config (optional)        :param external_data_variable_node_mapping: external data variable node mapping        """        # fetch start and knowledge retrieval node        start_node = next(filter(lambda n: n["data"]["type"] == NodeType.START.value, graph["nodes"]))        knowledge_retrieval_node = next(            filter(lambda n: n["data"]["type"] == NodeType.KNOWLEDGE_RETRIEVAL.value, graph["nodes"]), None        )        role_prefix = None        # Chat Model        if model_config.mode == LLMMode.CHAT.value:            if prompt_template.prompt_type == PromptTemplateEntity.PromptType.SIMPLE:                if not prompt_template.simple_prompt_template:                    raise ValueError("Simple prompt template is required")                # get prompt template                prompt_transform = SimplePromptTransform()                prompt_template_config = prompt_transform.get_prompt_template(                    app_mode=original_app_mode,                    provider=model_config.provider,                    model=model_config.model,                    pre_prompt=prompt_template.simple_prompt_template,                    has_context=knowledge_retrieval_node is not None,                    query_in_prompt=False,                )                template = prompt_template_config["prompt_template"].template                if not template:                    prompts = []                else:                    template = self._replace_template_variables(                        template, start_node["data"]["variables"], external_data_variable_node_mapping                    )                    prompts = [{"role": "user", "text": template}]            else:                advanced_chat_prompt_template = prompt_template.advanced_chat_prompt_template                prompts = []                if advanced_chat_prompt_template:                    for m in advanced_chat_prompt_template.messages:                        text = m.text                        text = self._replace_template_variables(                            text, start_node["data"]["variables"], external_data_variable_node_mapping                        )                        prompts.append({"role": m.role.value, "text": text})        # Completion Model        else:            if prompt_template.prompt_type == PromptTemplateEntity.PromptType.SIMPLE:                if not prompt_template.simple_prompt_template:                    raise ValueError("Simple prompt template is required")                # get prompt template                prompt_transform = SimplePromptTransform()                prompt_template_config = prompt_transform.get_prompt_template(                    app_mode=original_app_mode,                    provider=model_config.provider,                    model=model_config.model,                    pre_prompt=prompt_template.simple_prompt_template,                    has_context=knowledge_retrieval_node is not None,                    query_in_prompt=False,                )                template = prompt_template_config["prompt_template"].template                template = self._replace_template_variables(                    template=template,                    variables=start_node["data"]["variables"],                    external_data_variable_node_mapping=external_data_variable_node_mapping,                )                prompts = {"text": template}                prompt_rules = prompt_template_config["prompt_rules"]                role_prefix = {                    "user": prompt_rules.get("human_prefix", "Human"),                    "assistant": prompt_rules.get("assistant_prefix", "Assistant"),                }            else:                advanced_completion_prompt_template = prompt_template.advanced_completion_prompt_template                if advanced_completion_prompt_template:                    text = advanced_completion_prompt_template.prompt                    text = self._replace_template_variables(                        template=text,                        variables=start_node["data"]["variables"],                        external_data_variable_node_mapping=external_data_variable_node_mapping,                    )                else:                    text = ""                text = text.replace("{{#query#}}", "{{#sys.query#}}")                prompts = {                    "text": text,                }                if advanced_completion_prompt_template and advanced_completion_prompt_template.role_prefix:                    role_prefix = {                        "user": advanced_completion_prompt_template.role_prefix.user,                        "assistant": advanced_completion_prompt_template.role_prefix.assistant,                    }        memory = None        if new_app_mode == AppMode.ADVANCED_CHAT:            memory = {"role_prefix": role_prefix, "window": {"enabled": False}}        completion_params = model_config.parameters        completion_params.update({"stop": model_config.stop})        return {            "id": "llm",            "position": None,            "data": {                "title": "LLM",                "type": NodeType.LLM.value,                "model": {                    "provider": model_config.provider,                    "name": model_config.model,                    "mode": model_config.mode,                    "completion_params": completion_params,                },                "prompt_template": prompts,                "memory": memory,                "context": {                    "enabled": knowledge_retrieval_node is not None,                    "variable_selector": ["knowledge_retrieval", "result"]                    if knowledge_retrieval_node is not None                    else None,                },                "vision": {                    "enabled": file_upload is not None,                    "variable_selector": ["sys", "files"] if file_upload is not None else None,                    "configs": {"detail": file_upload.image_config["detail"]}                    if file_upload is not None and file_upload.image_config is not None                    else None,                },            },        }    def _replace_template_variables(        self, template: str, variables: list[dict], external_data_variable_node_mapping: dict[str, str] | None = None    ) -> str:        """        Replace Template Variables        :param template: template        :param variables: list of variables        :param external_data_variable_node_mapping: external data variable node mapping        :return:        """        for v in variables:            template = template.replace("{{" + v["variable"] + "}}", "{{#start." + v["variable"] + "#}}")        if external_data_variable_node_mapping:            for variable, code_node_id in external_data_variable_node_mapping.items():                template = template.replace("{{" + variable + "}}", "{{#" + code_node_id + ".result#}}")        return template    def _convert_to_end_node(self) -> dict:        """        Convert to End Node        :return:        """        # for original completion app        return {            "id": "end",            "position": None,            "data": {                "title": "END",                "type": NodeType.END.value,                "outputs": [{"variable": "result", "value_selector": ["llm", "text"]}],            },        }    def _convert_to_answer_node(self) -> dict:        """        Convert to Answer Node        :return:        """        # for original chat app        return {            "id": "answer",            "position": None,            "data": {"title": "ANSWER", "type": NodeType.ANSWER.value, "answer": "{{#llm.text#}}"},        }    def _create_edge(self, source: str, target: str) -> dict:        """        Create Edge        :param source: source node id        :param target: target node id        :return:        """        return {"id": f"{source}-{target}", "source": source, "target": target}    def _append_node(self, graph: dict, node: dict) -> dict:        """        Append Node to Graph        :param graph: Graph, include: nodes, edges        :param node: Node to append        :return:        """        previous_node = graph["nodes"][-1]        graph["nodes"].append(node)        graph["edges"].append(self._create_edge(previous_node["id"], node["id"]))        return graph    def _get_new_app_mode(self, app_model: App) -> AppMode:        """        Get new app mode        :param app_model: App instance        :return: AppMode        """        if app_model.mode == AppMode.COMPLETION.value:            return AppMode.WORKFLOW        else:            return AppMode.ADVANCED_CHAT    def _get_api_based_extension(self, tenant_id: str, api_based_extension_id: str):        """        Get API Based Extension        :param tenant_id: tenant id        :param api_based_extension_id: api based extension id        :return:        """        api_based_extension = (            db.session.query(APIBasedExtension)            .filter(APIBasedExtension.tenant_id == tenant_id, APIBasedExtension.id == api_based_extension_id)            .first()        )        if not api_based_extension:            raise ValueError(f"API Based Extension not found, id: {api_based_extension_id}")        return api_based_extension
 |