retrieval_service.py 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204
  1. import threading
  2. from typing import Optional
  3. from flask import Flask, current_app
  4. from core.rag.data_post_processor.data_post_processor import DataPostProcessor
  5. from core.rag.datasource.keyword.keyword_factory import Keyword
  6. from core.rag.datasource.vdb.vector_factory import Vector
  7. from core.rag.rerank.constants.rerank_mode import RerankMode
  8. from core.rag.retrieval.retrival_methods import RetrievalMethod
  9. from extensions.ext_database import db
  10. from models.dataset import Dataset
  11. default_retrieval_model = {
  12. 'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
  13. 'reranking_enable': False,
  14. 'reranking_model': {
  15. 'reranking_provider_name': '',
  16. 'reranking_model_name': ''
  17. },
  18. 'top_k': 2,
  19. 'score_threshold_enabled': False
  20. }
  21. class RetrievalService:
  22. @classmethod
  23. def retrieve(cls, retrival_method: str, dataset_id: str, query: str,
  24. top_k: int, score_threshold: Optional[float] = .0,
  25. reranking_model: Optional[dict] = None, reranking_mode: Optional[str] = None,
  26. weights: Optional[dict] = None):
  27. dataset = db.session.query(Dataset).filter(
  28. Dataset.id == dataset_id
  29. ).first()
  30. if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:
  31. return []
  32. all_documents = []
  33. keyword_search_documents = []
  34. embedding_search_documents = []
  35. full_text_search_documents = []
  36. hybrid_search_documents = []
  37. threads = []
  38. exceptions = []
  39. # retrieval_model source with keyword
  40. if retrival_method == 'keyword_search':
  41. keyword_thread = threading.Thread(target=RetrievalService.keyword_search, kwargs={
  42. 'flask_app': current_app._get_current_object(),
  43. 'dataset_id': dataset_id,
  44. 'query': query,
  45. 'top_k': top_k,
  46. 'all_documents': all_documents,
  47. 'exceptions': exceptions,
  48. })
  49. threads.append(keyword_thread)
  50. keyword_thread.start()
  51. # retrieval_model source with semantic
  52. if RetrievalMethod.is_support_semantic_search(retrival_method):
  53. embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
  54. 'flask_app': current_app._get_current_object(),
  55. 'dataset_id': dataset_id,
  56. 'query': query,
  57. 'top_k': top_k,
  58. 'score_threshold': score_threshold,
  59. 'reranking_model': reranking_model,
  60. 'all_documents': all_documents,
  61. 'retrival_method': retrival_method,
  62. 'exceptions': exceptions,
  63. })
  64. threads.append(embedding_thread)
  65. embedding_thread.start()
  66. # retrieval source with full text
  67. if RetrievalMethod.is_support_fulltext_search(retrival_method):
  68. full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
  69. 'flask_app': current_app._get_current_object(),
  70. 'dataset_id': dataset_id,
  71. 'query': query,
  72. 'retrival_method': retrival_method,
  73. 'score_threshold': score_threshold,
  74. 'top_k': top_k,
  75. 'reranking_model': reranking_model,
  76. 'all_documents': all_documents,
  77. 'exceptions': exceptions,
  78. })
  79. threads.append(full_text_index_thread)
  80. full_text_index_thread.start()
  81. for thread in threads:
  82. thread.join()
  83. if exceptions:
  84. exception_message = ';\n'.join(exceptions)
  85. raise Exception(exception_message)
  86. if retrival_method == RetrievalMethod.HYBRID_SEARCH.value:
  87. data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_mode,
  88. reranking_model, weights, False)
  89. all_documents = data_post_processor.invoke(
  90. query=query,
  91. documents=all_documents,
  92. score_threshold=score_threshold,
  93. top_n=top_k
  94. )
  95. return all_documents
  96. @classmethod
  97. def keyword_search(cls, flask_app: Flask, dataset_id: str, query: str,
  98. top_k: int, all_documents: list, exceptions: list):
  99. with flask_app.app_context():
  100. try:
  101. dataset = db.session.query(Dataset).filter(
  102. Dataset.id == dataset_id
  103. ).first()
  104. keyword = Keyword(
  105. dataset=dataset
  106. )
  107. documents = keyword.search(
  108. cls.escape_query_for_search(query),
  109. top_k=top_k
  110. )
  111. all_documents.extend(documents)
  112. except Exception as e:
  113. exceptions.append(str(e))
  114. @classmethod
  115. def embedding_search(cls, flask_app: Flask, dataset_id: str, query: str,
  116. top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
  117. all_documents: list, retrival_method: str, exceptions: list):
  118. with flask_app.app_context():
  119. try:
  120. dataset = db.session.query(Dataset).filter(
  121. Dataset.id == dataset_id
  122. ).first()
  123. vector = Vector(
  124. dataset=dataset
  125. )
  126. documents = vector.search_by_vector(
  127. cls.escape_query_for_search(query),
  128. search_type='similarity_score_threshold',
  129. top_k=top_k,
  130. score_threshold=score_threshold,
  131. filter={
  132. 'group_id': [dataset.id]
  133. }
  134. )
  135. if documents:
  136. if reranking_model and retrival_method == RetrievalMethod.SEMANTIC_SEARCH.value:
  137. data_post_processor = DataPostProcessor(str(dataset.tenant_id),
  138. RerankMode.RERANKING_MODEL.value,
  139. reranking_model, None, False)
  140. all_documents.extend(data_post_processor.invoke(
  141. query=query,
  142. documents=documents,
  143. score_threshold=score_threshold,
  144. top_n=len(documents)
  145. ))
  146. else:
  147. all_documents.extend(documents)
  148. except Exception as e:
  149. exceptions.append(str(e))
  150. @classmethod
  151. def full_text_index_search(cls, flask_app: Flask, dataset_id: str, query: str,
  152. top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
  153. all_documents: list, retrival_method: str, exceptions: list):
  154. with flask_app.app_context():
  155. try:
  156. dataset = db.session.query(Dataset).filter(
  157. Dataset.id == dataset_id
  158. ).first()
  159. vector_processor = Vector(
  160. dataset=dataset,
  161. )
  162. documents = vector_processor.search_by_full_text(
  163. cls.escape_query_for_search(query),
  164. top_k=top_k
  165. )
  166. if documents:
  167. if reranking_model and retrival_method == RetrievalMethod.FULL_TEXT_SEARCH.value:
  168. data_post_processor = DataPostProcessor(str(dataset.tenant_id),
  169. RerankMode.RERANKING_MODEL.value,
  170. reranking_model, None, False)
  171. all_documents.extend(data_post_processor.invoke(
  172. query=query,
  173. documents=documents,
  174. score_threshold=score_threshold,
  175. top_n=len(documents)
  176. ))
  177. else:
  178. all_documents.extend(documents)
  179. except Exception as e:
  180. exceptions.append(str(e))
  181. @staticmethod
  182. def escape_query_for_search(query: str) -> str:
  183. return query.replace('"', '\\"')