| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 | 
							
- from typing import Optional
 
- from flask import current_app, Flask
 
- from langchain.embeddings.base import Embeddings
 
- from core.index.vector_index.vector_index import VectorIndex
 
- from core.model_providers.model_factory import ModelFactory
 
- from extensions.ext_database import db
 
- from models.dataset import Dataset
 
- default_retrieval_model = {
 
-     'search_method': 'semantic_search',
 
-     'reranking_enable': False,
 
-     'reranking_model': {
 
-         'reranking_provider_name': '',
 
-         'reranking_model_name': ''
 
-     },
 
-     'top_k': 2,
 
-     'score_threshold_enabled': False
 
- }
 
- class RetrievalService:
 
-     @classmethod
 
-     def embedding_search(cls, flask_app: Flask, dataset_id: str, query: str,
 
-                          top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
 
-                          all_documents: list, search_method: str, embeddings: Embeddings):
 
-         with flask_app.app_context():
 
-             dataset = db.session.query(Dataset).filter(
 
-                 Dataset.id == dataset_id
 
-             ).first()
 
-             vector_index = VectorIndex(
 
-                 dataset=dataset,
 
-                 config=current_app.config,
 
-                 embeddings=embeddings
 
-             )
 
-             documents = vector_index.search(
 
-                 query,
 
-                 search_type='similarity_score_threshold',
 
-                 search_kwargs={
 
-                     'k': top_k,
 
-                     'score_threshold': score_threshold,
 
-                     'filter': {
 
-                         'group_id': [dataset.id]
 
-                     }
 
-                 }
 
-             )
 
-             if documents:
 
-                 if reranking_model and search_method == 'semantic_search':
 
-                     rerank = ModelFactory.get_reranking_model(
 
-                         tenant_id=dataset.tenant_id,
 
-                         model_provider_name=reranking_model['reranking_provider_name'],
 
-                         model_name=reranking_model['reranking_model_name']
 
-                     )
 
-                     all_documents.extend(rerank.rerank(query, documents, score_threshold, len(documents)))
 
-                 else:
 
-                     all_documents.extend(documents)
 
-     @classmethod
 
-     def full_text_index_search(cls, flask_app: Flask, dataset_id: str, query: str,
 
-                                top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
 
-                                all_documents: list, search_method: str, embeddings: Embeddings):
 
-         with flask_app.app_context():
 
-             dataset = db.session.query(Dataset).filter(
 
-                 Dataset.id == dataset_id
 
-             ).first()
 
-             vector_index = VectorIndex(
 
-                 dataset=dataset,
 
-                 config=current_app.config,
 
-                 embeddings=embeddings
 
-             )
 
-             documents = vector_index.search_by_full_text_index(
 
-                 query,
 
-                 search_type='similarity_score_threshold',
 
-                 top_k=top_k
 
-             )
 
-             if documents:
 
-                 if reranking_model and search_method == 'full_text_search':
 
-                     rerank = ModelFactory.get_reranking_model(
 
-                         tenant_id=dataset.tenant_id,
 
-                         model_provider_name=reranking_model['reranking_provider_name'],
 
-                         model_name=reranking_model['reranking_model_name']
 
-                     )
 
-                     all_documents.extend(rerank.rerank(query, documents, score_threshold, len(documents)))
 
-                 else:
 
-                     all_documents.extend(documents)
 
 
  |