非法操作 afe95fa780 feat: support get workflow task execution status (#6411) 9 months ago
..
configs 4ed1476531 fix: incorrect config key name (#6371) 9 months ago
constants 6ef401a9f0 feat:add tts-streaming config and future (#5492) 9 months ago
controllers afe95fa780 feat: support get workflow task execution status (#6411) 9 months ago
core 588615b20e feat: Spider web scraper & crawler tool (#5725) 9 months ago
docker 5236cb1888 fix: kill signal is not passed to the main process (#6159) 9 months ago
events d320d1468d Feat/delete file when clean document (#5882) 9 months ago
extensions 7c397f5722 update celery beat scheduler time to env (#6352) 9 months ago
fields 9622fbb62f feat: app rate limit (#5844) 9 months ago
libs 9622fbb62f feat: app rate limit (#5844) 9 months ago
migrations 9622fbb62f feat: app rate limit (#5844) 9 months ago
models 8a80af39c9 refactor(models&tools): switch to dify_config in models and tools. (#6394) 9 months ago
schedule 1bc90b992b Feat/optimize clean dataset logic (#6384) 9 months ago
services f55876bcc5 fix web import url is too long (#6402) 9 months ago
tasks 443e96777b update empty document caused delete exist collection (#6392) 9 months ago
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) 9 months ago
tests 3b5b548af3 Add Stepfun LLM Support (#6346) 9 months ago
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 10 months ago
.env.example 7c397f5722 update celery beat scheduler time to env (#6352) 9 months ago
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) 9 months ago
README.md 2d6624cf9e typo: Update README.md (#5987) 9 months ago
app.py d7f75d17cc Chore/remove-unused-code (#5917) 9 months ago
commands.py 7c70eb87bc feat: support AnalyticDB vector store (#5586) 9 months ago
poetry.lock 4e2fba404d WebscraperTool bypass cloudflare site by cloudscraper (#6337) 9 months ago
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 10 months ago
pyproject.toml 4e2fba404d WebscraperTool bypass cloudflare site by cloudscraper (#6337) 9 months ago

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
    
    secret_key=$(openssl rand -base64 42)
    sed -i '' "/^SECRET_KEY=/c\\
    SECRET_KEY=${secret_key}" .env
    
  3. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies

    poetry env use 3.10
    poetry install
    

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend

    poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
    
  2. Start Dify web service.

  3. Setup your application by visiting http://localhost:3000...

  4. If you need to debug local async processing, please start the worker service.

    poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion
    

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    poetry install --with dev
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    cd ../
    poetry run -C api bash dev/pytest/pytest_all_tests.sh