dataset_service.py 72 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637
  1. import datetime
  2. import json
  3. import logging
  4. import random
  5. import time
  6. import uuid
  7. from typing import Optional
  8. from flask_login import current_user
  9. from sqlalchemy import func
  10. from configs import dify_config
  11. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  12. from core.model_manager import ModelManager
  13. from core.model_runtime.entities.model_entities import ModelType
  14. from core.rag.datasource.keyword.keyword_factory import Keyword
  15. from core.rag.models.document import Document as RAGDocument
  16. from core.rag.retrieval.retrival_methods import RetrievalMethod
  17. from events.dataset_event import dataset_was_deleted
  18. from events.document_event import document_was_deleted
  19. from extensions.ext_database import db
  20. from extensions.ext_redis import redis_client
  21. from libs import helper
  22. from models.account import Account, TenantAccountRole
  23. from models.dataset import (
  24. AppDatasetJoin,
  25. Dataset,
  26. DatasetCollectionBinding,
  27. DatasetPermission,
  28. DatasetProcessRule,
  29. DatasetQuery,
  30. Document,
  31. DocumentSegment,
  32. )
  33. from models.model import UploadFile
  34. from models.source import DataSourceOauthBinding
  35. from services.errors.account import NoPermissionError
  36. from services.errors.dataset import DatasetNameDuplicateError
  37. from services.errors.document import DocumentIndexingError
  38. from services.errors.file import FileNotExistsError
  39. from services.feature_service import FeatureModel, FeatureService
  40. from services.tag_service import TagService
  41. from services.vector_service import VectorService
  42. from tasks.clean_notion_document_task import clean_notion_document_task
  43. from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
  44. from tasks.delete_segment_from_index_task import delete_segment_from_index_task
  45. from tasks.disable_segment_from_index_task import disable_segment_from_index_task
  46. from tasks.document_indexing_task import document_indexing_task
  47. from tasks.document_indexing_update_task import document_indexing_update_task
  48. from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task
  49. from tasks.recover_document_indexing_task import recover_document_indexing_task
  50. from tasks.retry_document_indexing_task import retry_document_indexing_task
  51. from tasks.sync_website_document_indexing_task import sync_website_document_indexing_task
  52. class DatasetService:
  53. @staticmethod
  54. def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None, search=None, tag_ids=None):
  55. query = Dataset.query.filter(Dataset.provider == provider, Dataset.tenant_id == tenant_id).order_by(
  56. Dataset.created_at.desc()
  57. )
  58. if user:
  59. # get permitted dataset ids
  60. dataset_permission = DatasetPermission.query.filter_by(
  61. account_id=user.id,
  62. tenant_id=tenant_id
  63. ).all()
  64. permitted_dataset_ids = {dp.dataset_id for dp in dataset_permission} if dataset_permission else None
  65. if user.current_role == TenantAccountRole.DATASET_OPERATOR:
  66. # only show datasets that the user has permission to access
  67. if permitted_dataset_ids:
  68. query = query.filter(Dataset.id.in_(permitted_dataset_ids))
  69. else:
  70. return [], 0
  71. else:
  72. # show all datasets that the user has permission to access
  73. if permitted_dataset_ids:
  74. query = query.filter(
  75. db.or_(
  76. Dataset.permission == 'all_team_members',
  77. db.and_(Dataset.permission == 'only_me', Dataset.created_by == user.id),
  78. db.and_(Dataset.permission == 'partial_members', Dataset.id.in_(permitted_dataset_ids))
  79. )
  80. )
  81. else:
  82. query = query.filter(
  83. db.or_(
  84. Dataset.permission == 'all_team_members',
  85. db.and_(Dataset.permission == 'only_me', Dataset.created_by == user.id)
  86. )
  87. )
  88. else:
  89. # if no user, only show datasets that are shared with all team members
  90. query = query.filter(Dataset.permission == 'all_team_members')
  91. if search:
  92. query = query.filter(Dataset.name.ilike(f'%{search}%'))
  93. if tag_ids:
  94. target_ids = TagService.get_target_ids_by_tag_ids('knowledge', tenant_id, tag_ids)
  95. if target_ids:
  96. query = query.filter(Dataset.id.in_(target_ids))
  97. else:
  98. return [], 0
  99. datasets = query.paginate(
  100. page=page,
  101. per_page=per_page,
  102. max_per_page=100,
  103. error_out=False
  104. )
  105. return datasets.items, datasets.total
  106. @staticmethod
  107. def get_process_rules(dataset_id):
  108. # get the latest process rule
  109. dataset_process_rule = db.session.query(DatasetProcessRule). \
  110. filter(DatasetProcessRule.dataset_id == dataset_id). \
  111. order_by(DatasetProcessRule.created_at.desc()). \
  112. limit(1). \
  113. one_or_none()
  114. if dataset_process_rule:
  115. mode = dataset_process_rule.mode
  116. rules = dataset_process_rule.rules_dict
  117. else:
  118. mode = DocumentService.DEFAULT_RULES['mode']
  119. rules = DocumentService.DEFAULT_RULES['rules']
  120. return {
  121. 'mode': mode,
  122. 'rules': rules
  123. }
  124. @staticmethod
  125. def get_datasets_by_ids(ids, tenant_id):
  126. datasets = Dataset.query.filter(
  127. Dataset.id.in_(ids),
  128. Dataset.tenant_id == tenant_id
  129. ).paginate(
  130. page=1, per_page=len(ids), max_per_page=len(ids), error_out=False
  131. )
  132. return datasets.items, datasets.total
  133. @staticmethod
  134. def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
  135. # check if dataset name already exists
  136. if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
  137. raise DatasetNameDuplicateError(
  138. f'Dataset with name {name} already exists.'
  139. )
  140. embedding_model = None
  141. if indexing_technique == 'high_quality':
  142. model_manager = ModelManager()
  143. embedding_model = model_manager.get_default_model_instance(
  144. tenant_id=tenant_id,
  145. model_type=ModelType.TEXT_EMBEDDING
  146. )
  147. dataset = Dataset(name=name, indexing_technique=indexing_technique)
  148. # dataset = Dataset(name=name, provider=provider, config=config)
  149. dataset.created_by = account.id
  150. dataset.updated_by = account.id
  151. dataset.tenant_id = tenant_id
  152. dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
  153. dataset.embedding_model = embedding_model.model if embedding_model else None
  154. db.session.add(dataset)
  155. db.session.commit()
  156. return dataset
  157. @staticmethod
  158. def get_dataset(dataset_id):
  159. return Dataset.query.filter_by(
  160. id=dataset_id
  161. ).first()
  162. @staticmethod
  163. def check_dataset_model_setting(dataset):
  164. if dataset.indexing_technique == 'high_quality':
  165. try:
  166. model_manager = ModelManager()
  167. model_manager.get_model_instance(
  168. tenant_id=dataset.tenant_id,
  169. provider=dataset.embedding_model_provider,
  170. model_type=ModelType.TEXT_EMBEDDING,
  171. model=dataset.embedding_model
  172. )
  173. except LLMBadRequestError:
  174. raise ValueError(
  175. "No Embedding Model available. Please configure a valid provider "
  176. "in the Settings -> Model Provider."
  177. )
  178. except ProviderTokenNotInitError as ex:
  179. raise ValueError(
  180. f"The dataset in unavailable, due to: "
  181. f"{ex.description}"
  182. )
  183. @staticmethod
  184. def update_dataset(dataset_id, data, user):
  185. data.pop('partial_member_list', None)
  186. filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
  187. dataset = DatasetService.get_dataset(dataset_id)
  188. DatasetService.check_dataset_permission(dataset, user)
  189. action = None
  190. if dataset.indexing_technique != data['indexing_technique']:
  191. # if update indexing_technique
  192. if data['indexing_technique'] == 'economy':
  193. action = 'remove'
  194. filtered_data['embedding_model'] = None
  195. filtered_data['embedding_model_provider'] = None
  196. filtered_data['collection_binding_id'] = None
  197. elif data['indexing_technique'] == 'high_quality':
  198. action = 'add'
  199. # get embedding model setting
  200. try:
  201. model_manager = ModelManager()
  202. embedding_model = model_manager.get_model_instance(
  203. tenant_id=current_user.current_tenant_id,
  204. provider=data['embedding_model_provider'],
  205. model_type=ModelType.TEXT_EMBEDDING,
  206. model=data['embedding_model']
  207. )
  208. filtered_data['embedding_model'] = embedding_model.model
  209. filtered_data['embedding_model_provider'] = embedding_model.provider
  210. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  211. embedding_model.provider,
  212. embedding_model.model
  213. )
  214. filtered_data['collection_binding_id'] = dataset_collection_binding.id
  215. except LLMBadRequestError:
  216. raise ValueError(
  217. "No Embedding Model available. Please configure a valid provider "
  218. "in the Settings -> Model Provider."
  219. )
  220. except ProviderTokenNotInitError as ex:
  221. raise ValueError(ex.description)
  222. else:
  223. if data['embedding_model_provider'] != dataset.embedding_model_provider or \
  224. data['embedding_model'] != dataset.embedding_model:
  225. action = 'update'
  226. try:
  227. model_manager = ModelManager()
  228. embedding_model = model_manager.get_model_instance(
  229. tenant_id=current_user.current_tenant_id,
  230. provider=data['embedding_model_provider'],
  231. model_type=ModelType.TEXT_EMBEDDING,
  232. model=data['embedding_model']
  233. )
  234. filtered_data['embedding_model'] = embedding_model.model
  235. filtered_data['embedding_model_provider'] = embedding_model.provider
  236. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  237. embedding_model.provider,
  238. embedding_model.model
  239. )
  240. filtered_data['collection_binding_id'] = dataset_collection_binding.id
  241. except LLMBadRequestError:
  242. raise ValueError(
  243. "No Embedding Model available. Please configure a valid provider "
  244. "in the Settings -> Model Provider."
  245. )
  246. except ProviderTokenNotInitError as ex:
  247. raise ValueError(ex.description)
  248. filtered_data['updated_by'] = user.id
  249. filtered_data['updated_at'] = datetime.datetime.now()
  250. # update Retrieval model
  251. filtered_data['retrieval_model'] = data['retrieval_model']
  252. dataset.query.filter_by(id=dataset_id).update(filtered_data)
  253. db.session.commit()
  254. if action:
  255. deal_dataset_vector_index_task.delay(dataset_id, action)
  256. return dataset
  257. @staticmethod
  258. def delete_dataset(dataset_id, user):
  259. dataset = DatasetService.get_dataset(dataset_id)
  260. if dataset is None:
  261. return False
  262. DatasetService.check_dataset_permission(dataset, user)
  263. dataset_was_deleted.send(dataset)
  264. db.session.delete(dataset)
  265. db.session.commit()
  266. return True
  267. @staticmethod
  268. def dataset_use_check(dataset_id) -> bool:
  269. count = AppDatasetJoin.query.filter_by(dataset_id=dataset_id).count()
  270. if count > 0:
  271. return True
  272. return False
  273. @staticmethod
  274. def check_dataset_permission(dataset, user):
  275. if dataset.tenant_id != user.current_tenant_id:
  276. logging.debug(
  277. f'User {user.id} does not have permission to access dataset {dataset.id}'
  278. )
  279. raise NoPermissionError(
  280. 'You do not have permission to access this dataset.'
  281. )
  282. if dataset.permission == 'only_me' and dataset.created_by != user.id:
  283. logging.debug(
  284. f'User {user.id} does not have permission to access dataset {dataset.id}'
  285. )
  286. raise NoPermissionError(
  287. 'You do not have permission to access this dataset.'
  288. )
  289. if dataset.permission == 'partial_members':
  290. user_permission = DatasetPermission.query.filter_by(
  291. dataset_id=dataset.id, account_id=user.id
  292. ).first()
  293. if not user_permission and dataset.tenant_id != user.current_tenant_id and dataset.created_by != user.id:
  294. logging.debug(
  295. f'User {user.id} does not have permission to access dataset {dataset.id}'
  296. )
  297. raise NoPermissionError(
  298. 'You do not have permission to access this dataset.'
  299. )
  300. @staticmethod
  301. def check_dataset_operator_permission(user: Account = None, dataset: Dataset = None):
  302. if dataset.permission == 'only_me':
  303. if dataset.created_by != user.id:
  304. raise NoPermissionError('You do not have permission to access this dataset.')
  305. elif dataset.permission == 'partial_members':
  306. if not any(
  307. dp.dataset_id == dataset.id for dp in DatasetPermission.query.filter_by(account_id=user.id).all()
  308. ):
  309. raise NoPermissionError('You do not have permission to access this dataset.')
  310. @staticmethod
  311. def get_dataset_queries(dataset_id: str, page: int, per_page: int):
  312. dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
  313. .order_by(db.desc(DatasetQuery.created_at)) \
  314. .paginate(
  315. page=page, per_page=per_page, max_per_page=100, error_out=False
  316. )
  317. return dataset_queries.items, dataset_queries.total
  318. @staticmethod
  319. def get_related_apps(dataset_id: str):
  320. return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
  321. .order_by(db.desc(AppDatasetJoin.created_at)).all()
  322. class DocumentService:
  323. DEFAULT_RULES = {
  324. 'mode': 'custom',
  325. 'rules': {
  326. 'pre_processing_rules': [
  327. {'id': 'remove_extra_spaces', 'enabled': True},
  328. {'id': 'remove_urls_emails', 'enabled': False}
  329. ],
  330. 'segmentation': {
  331. 'delimiter': '\n',
  332. 'max_tokens': 500,
  333. 'chunk_overlap': 50
  334. }
  335. }
  336. }
  337. DOCUMENT_METADATA_SCHEMA = {
  338. "book": {
  339. "title": str,
  340. "language": str,
  341. "author": str,
  342. "publisher": str,
  343. "publication_date": str,
  344. "isbn": str,
  345. "category": str,
  346. },
  347. "web_page": {
  348. "title": str,
  349. "url": str,
  350. "language": str,
  351. "publish_date": str,
  352. "author/publisher": str,
  353. "topic/keywords": str,
  354. "description": str,
  355. },
  356. "paper": {
  357. "title": str,
  358. "language": str,
  359. "author": str,
  360. "publish_date": str,
  361. "journal/conference_name": str,
  362. "volume/issue/page_numbers": str,
  363. "doi": str,
  364. "topic/keywords": str,
  365. "abstract": str,
  366. },
  367. "social_media_post": {
  368. "platform": str,
  369. "author/username": str,
  370. "publish_date": str,
  371. "post_url": str,
  372. "topic/tags": str,
  373. },
  374. "wikipedia_entry": {
  375. "title": str,
  376. "language": str,
  377. "web_page_url": str,
  378. "last_edit_date": str,
  379. "editor/contributor": str,
  380. "summary/introduction": str,
  381. },
  382. "personal_document": {
  383. "title": str,
  384. "author": str,
  385. "creation_date": str,
  386. "last_modified_date": str,
  387. "document_type": str,
  388. "tags/category": str,
  389. },
  390. "business_document": {
  391. "title": str,
  392. "author": str,
  393. "creation_date": str,
  394. "last_modified_date": str,
  395. "document_type": str,
  396. "department/team": str,
  397. },
  398. "im_chat_log": {
  399. "chat_platform": str,
  400. "chat_participants/group_name": str,
  401. "start_date": str,
  402. "end_date": str,
  403. "summary": str,
  404. },
  405. "synced_from_notion": {
  406. "title": str,
  407. "language": str,
  408. "author/creator": str,
  409. "creation_date": str,
  410. "last_modified_date": str,
  411. "notion_page_link": str,
  412. "category/tags": str,
  413. "description": str,
  414. },
  415. "synced_from_github": {
  416. "repository_name": str,
  417. "repository_description": str,
  418. "repository_owner/organization": str,
  419. "code_filename": str,
  420. "code_file_path": str,
  421. "programming_language": str,
  422. "github_link": str,
  423. "open_source_license": str,
  424. "commit_date": str,
  425. "commit_author": str,
  426. },
  427. "others": dict
  428. }
  429. @staticmethod
  430. def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
  431. document = db.session.query(Document).filter(
  432. Document.id == document_id,
  433. Document.dataset_id == dataset_id
  434. ).first()
  435. return document
  436. @staticmethod
  437. def get_document_by_id(document_id: str) -> Optional[Document]:
  438. document = db.session.query(Document).filter(
  439. Document.id == document_id
  440. ).first()
  441. return document
  442. @staticmethod
  443. def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
  444. documents = db.session.query(Document).filter(
  445. Document.dataset_id == dataset_id,
  446. Document.enabled == True
  447. ).all()
  448. return documents
  449. @staticmethod
  450. def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:
  451. documents = db.session.query(Document).filter(
  452. Document.dataset_id == dataset_id,
  453. Document.indexing_status.in_(['error', 'paused'])
  454. ).all()
  455. return documents
  456. @staticmethod
  457. def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
  458. documents = db.session.query(Document).filter(
  459. Document.batch == batch,
  460. Document.dataset_id == dataset_id,
  461. Document.tenant_id == current_user.current_tenant_id
  462. ).all()
  463. return documents
  464. @staticmethod
  465. def get_document_file_detail(file_id: str):
  466. file_detail = db.session.query(UploadFile). \
  467. filter(UploadFile.id == file_id). \
  468. one_or_none()
  469. return file_detail
  470. @staticmethod
  471. def check_archived(document):
  472. if document.archived:
  473. return True
  474. else:
  475. return False
  476. @staticmethod
  477. def delete_document(document):
  478. # trigger document_was_deleted signal
  479. file_id = None
  480. if document.data_source_type == 'upload_file':
  481. if document.data_source_info:
  482. data_source_info = document.data_source_info_dict
  483. if data_source_info and 'upload_file_id' in data_source_info:
  484. file_id = data_source_info['upload_file_id']
  485. document_was_deleted.send(document.id, dataset_id=document.dataset_id,
  486. doc_form=document.doc_form, file_id=file_id)
  487. db.session.delete(document)
  488. db.session.commit()
  489. @staticmethod
  490. def rename_document(dataset_id: str, document_id: str, name: str) -> Document:
  491. dataset = DatasetService.get_dataset(dataset_id)
  492. if not dataset:
  493. raise ValueError('Dataset not found.')
  494. document = DocumentService.get_document(dataset_id, document_id)
  495. if not document:
  496. raise ValueError('Document not found.')
  497. if document.tenant_id != current_user.current_tenant_id:
  498. raise ValueError('No permission.')
  499. document.name = name
  500. db.session.add(document)
  501. db.session.commit()
  502. return document
  503. @staticmethod
  504. def pause_document(document):
  505. if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
  506. raise DocumentIndexingError()
  507. # update document to be paused
  508. document.is_paused = True
  509. document.paused_by = current_user.id
  510. document.paused_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  511. db.session.add(document)
  512. db.session.commit()
  513. # set document paused flag
  514. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  515. redis_client.setnx(indexing_cache_key, "True")
  516. @staticmethod
  517. def recover_document(document):
  518. if not document.is_paused:
  519. raise DocumentIndexingError()
  520. # update document to be recover
  521. document.is_paused = False
  522. document.paused_by = None
  523. document.paused_at = None
  524. db.session.add(document)
  525. db.session.commit()
  526. # delete paused flag
  527. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  528. redis_client.delete(indexing_cache_key)
  529. # trigger async task
  530. recover_document_indexing_task.delay(document.dataset_id, document.id)
  531. @staticmethod
  532. def retry_document(dataset_id: str, documents: list[Document]):
  533. for document in documents:
  534. # add retry flag
  535. retry_indexing_cache_key = 'document_{}_is_retried'.format(document.id)
  536. cache_result = redis_client.get(retry_indexing_cache_key)
  537. if cache_result is not None:
  538. raise ValueError("Document is being retried, please try again later")
  539. # retry document indexing
  540. document.indexing_status = 'waiting'
  541. db.session.add(document)
  542. db.session.commit()
  543. redis_client.setex(retry_indexing_cache_key, 600, 1)
  544. # trigger async task
  545. document_ids = [document.id for document in documents]
  546. retry_document_indexing_task.delay(dataset_id, document_ids)
  547. @staticmethod
  548. def sync_website_document(dataset_id: str, document: Document):
  549. # add sync flag
  550. sync_indexing_cache_key = 'document_{}_is_sync'.format(document.id)
  551. cache_result = redis_client.get(sync_indexing_cache_key)
  552. if cache_result is not None:
  553. raise ValueError("Document is being synced, please try again later")
  554. # sync document indexing
  555. document.indexing_status = 'waiting'
  556. data_source_info = document.data_source_info_dict
  557. data_source_info['mode'] = 'scrape'
  558. document.data_source_info = json.dumps(data_source_info, ensure_ascii=False)
  559. db.session.add(document)
  560. db.session.commit()
  561. redis_client.setex(sync_indexing_cache_key, 600, 1)
  562. sync_website_document_indexing_task.delay(dataset_id, document.id)
  563. @staticmethod
  564. def get_documents_position(dataset_id):
  565. document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
  566. if document:
  567. return document.position + 1
  568. else:
  569. return 1
  570. @staticmethod
  571. def save_document_with_dataset_id(
  572. dataset: Dataset, document_data: dict,
  573. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  574. created_from: str = 'web'
  575. ):
  576. # check document limit
  577. features = FeatureService.get_features(current_user.current_tenant_id)
  578. if features.billing.enabled:
  579. if 'original_document_id' not in document_data or not document_data['original_document_id']:
  580. count = 0
  581. if document_data["data_source"]["type"] == "upload_file":
  582. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  583. count = len(upload_file_list)
  584. elif document_data["data_source"]["type"] == "notion_import":
  585. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  586. for notion_info in notion_info_list:
  587. count = count + len(notion_info['pages'])
  588. elif document_data["data_source"]["type"] == "website_crawl":
  589. website_info = document_data["data_source"]['info_list']['website_info_list']
  590. count = len(website_info['urls'])
  591. batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
  592. if count > batch_upload_limit:
  593. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  594. DocumentService.check_documents_upload_quota(count, features)
  595. # if dataset is empty, update dataset data_source_type
  596. if not dataset.data_source_type:
  597. dataset.data_source_type = document_data["data_source"]["type"]
  598. if not dataset.indexing_technique:
  599. if 'indexing_technique' not in document_data \
  600. or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
  601. raise ValueError("Indexing technique is required")
  602. dataset.indexing_technique = document_data["indexing_technique"]
  603. if document_data["indexing_technique"] == 'high_quality':
  604. model_manager = ModelManager()
  605. embedding_model = model_manager.get_default_model_instance(
  606. tenant_id=current_user.current_tenant_id,
  607. model_type=ModelType.TEXT_EMBEDDING
  608. )
  609. dataset.embedding_model = embedding_model.model
  610. dataset.embedding_model_provider = embedding_model.provider
  611. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  612. embedding_model.provider,
  613. embedding_model.model
  614. )
  615. dataset.collection_binding_id = dataset_collection_binding.id
  616. if not dataset.retrieval_model:
  617. default_retrieval_model = {
  618. 'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
  619. 'reranking_enable': False,
  620. 'reranking_model': {
  621. 'reranking_provider_name': '',
  622. 'reranking_model_name': ''
  623. },
  624. 'top_k': 2,
  625. 'score_threshold_enabled': False
  626. }
  627. dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get(
  628. 'retrieval_model'
  629. ) else default_retrieval_model
  630. documents = []
  631. batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
  632. if document_data.get("original_document_id"):
  633. document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
  634. documents.append(document)
  635. else:
  636. # save process rule
  637. if not dataset_process_rule:
  638. process_rule = document_data["process_rule"]
  639. if process_rule["mode"] == "custom":
  640. dataset_process_rule = DatasetProcessRule(
  641. dataset_id=dataset.id,
  642. mode=process_rule["mode"],
  643. rules=json.dumps(process_rule["rules"]),
  644. created_by=account.id
  645. )
  646. elif process_rule["mode"] == "automatic":
  647. dataset_process_rule = DatasetProcessRule(
  648. dataset_id=dataset.id,
  649. mode=process_rule["mode"],
  650. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  651. created_by=account.id
  652. )
  653. db.session.add(dataset_process_rule)
  654. db.session.commit()
  655. position = DocumentService.get_documents_position(dataset.id)
  656. document_ids = []
  657. duplicate_document_ids = []
  658. if document_data["data_source"]["type"] == "upload_file":
  659. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  660. for file_id in upload_file_list:
  661. file = db.session.query(UploadFile).filter(
  662. UploadFile.tenant_id == dataset.tenant_id,
  663. UploadFile.id == file_id
  664. ).first()
  665. # raise error if file not found
  666. if not file:
  667. raise FileNotExistsError()
  668. file_name = file.name
  669. data_source_info = {
  670. "upload_file_id": file_id,
  671. }
  672. # check duplicate
  673. if document_data.get('duplicate', False):
  674. document = Document.query.filter_by(
  675. dataset_id=dataset.id,
  676. tenant_id=current_user.current_tenant_id,
  677. data_source_type='upload_file',
  678. enabled=True,
  679. name=file_name
  680. ).first()
  681. if document:
  682. document.dataset_process_rule_id = dataset_process_rule.id
  683. document.updated_at = datetime.datetime.utcnow()
  684. document.created_from = created_from
  685. document.doc_form = document_data['doc_form']
  686. document.doc_language = document_data['doc_language']
  687. document.data_source_info = json.dumps(data_source_info)
  688. document.batch = batch
  689. document.indexing_status = 'waiting'
  690. db.session.add(document)
  691. documents.append(document)
  692. duplicate_document_ids.append(document.id)
  693. continue
  694. document = DocumentService.build_document(
  695. dataset, dataset_process_rule.id,
  696. document_data["data_source"]["type"],
  697. document_data["doc_form"],
  698. document_data["doc_language"],
  699. data_source_info, created_from, position,
  700. account, file_name, batch
  701. )
  702. db.session.add(document)
  703. db.session.flush()
  704. document_ids.append(document.id)
  705. documents.append(document)
  706. position += 1
  707. elif document_data["data_source"]["type"] == "notion_import":
  708. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  709. exist_page_ids = []
  710. exist_document = {}
  711. documents = Document.query.filter_by(
  712. dataset_id=dataset.id,
  713. tenant_id=current_user.current_tenant_id,
  714. data_source_type='notion_import',
  715. enabled=True
  716. ).all()
  717. if documents:
  718. for document in documents:
  719. data_source_info = json.loads(document.data_source_info)
  720. exist_page_ids.append(data_source_info['notion_page_id'])
  721. exist_document[data_source_info['notion_page_id']] = document.id
  722. for notion_info in notion_info_list:
  723. workspace_id = notion_info['workspace_id']
  724. data_source_binding = DataSourceOauthBinding.query.filter(
  725. db.and_(
  726. DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
  727. DataSourceOauthBinding.provider == 'notion',
  728. DataSourceOauthBinding.disabled == False,
  729. DataSourceOauthBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  730. )
  731. ).first()
  732. if not data_source_binding:
  733. raise ValueError('Data source binding not found.')
  734. for page in notion_info['pages']:
  735. if page['page_id'] not in exist_page_ids:
  736. data_source_info = {
  737. "notion_workspace_id": workspace_id,
  738. "notion_page_id": page['page_id'],
  739. "notion_page_icon": page['page_icon'],
  740. "type": page['type']
  741. }
  742. document = DocumentService.build_document(
  743. dataset, dataset_process_rule.id,
  744. document_data["data_source"]["type"],
  745. document_data["doc_form"],
  746. document_data["doc_language"],
  747. data_source_info, created_from, position,
  748. account, page['page_name'], batch
  749. )
  750. db.session.add(document)
  751. db.session.flush()
  752. document_ids.append(document.id)
  753. documents.append(document)
  754. position += 1
  755. else:
  756. exist_document.pop(page['page_id'])
  757. # delete not selected documents
  758. if len(exist_document) > 0:
  759. clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
  760. elif document_data["data_source"]["type"] == "website_crawl":
  761. website_info = document_data["data_source"]['info_list']['website_info_list']
  762. urls = website_info['urls']
  763. for url in urls:
  764. data_source_info = {
  765. 'url': url,
  766. 'provider': website_info['provider'],
  767. 'job_id': website_info['job_id'],
  768. 'only_main_content': website_info.get('only_main_content', False),
  769. 'mode': 'crawl',
  770. }
  771. if len(url) > 255:
  772. document_name = url[:200] + '...'
  773. else:
  774. document_name = url
  775. document = DocumentService.build_document(
  776. dataset, dataset_process_rule.id,
  777. document_data["data_source"]["type"],
  778. document_data["doc_form"],
  779. document_data["doc_language"],
  780. data_source_info, created_from, position,
  781. account, document_name, batch
  782. )
  783. db.session.add(document)
  784. db.session.flush()
  785. document_ids.append(document.id)
  786. documents.append(document)
  787. position += 1
  788. db.session.commit()
  789. # trigger async task
  790. if document_ids:
  791. document_indexing_task.delay(dataset.id, document_ids)
  792. if duplicate_document_ids:
  793. duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)
  794. return documents, batch
  795. @staticmethod
  796. def check_documents_upload_quota(count: int, features: FeatureModel):
  797. can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
  798. if count > can_upload_size:
  799. raise ValueError(
  800. f'You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded.'
  801. )
  802. @staticmethod
  803. def build_document(
  804. dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
  805. document_language: str, data_source_info: dict, created_from: str, position: int,
  806. account: Account,
  807. name: str, batch: str
  808. ):
  809. document = Document(
  810. tenant_id=dataset.tenant_id,
  811. dataset_id=dataset.id,
  812. position=position,
  813. data_source_type=data_source_type,
  814. data_source_info=json.dumps(data_source_info),
  815. dataset_process_rule_id=process_rule_id,
  816. batch=batch,
  817. name=name,
  818. created_from=created_from,
  819. created_by=account.id,
  820. doc_form=document_form,
  821. doc_language=document_language
  822. )
  823. return document
  824. @staticmethod
  825. def get_tenant_documents_count():
  826. documents_count = Document.query.filter(
  827. Document.completed_at.isnot(None),
  828. Document.enabled == True,
  829. Document.archived == False,
  830. Document.tenant_id == current_user.current_tenant_id
  831. ).count()
  832. return documents_count
  833. @staticmethod
  834. def update_document_with_dataset_id(
  835. dataset: Dataset, document_data: dict,
  836. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  837. created_from: str = 'web'
  838. ):
  839. DatasetService.check_dataset_model_setting(dataset)
  840. document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
  841. if document.display_status != 'available':
  842. raise ValueError("Document is not available")
  843. # update document name
  844. if document_data.get('name'):
  845. document.name = document_data['name']
  846. # save process rule
  847. if document_data.get('process_rule'):
  848. process_rule = document_data["process_rule"]
  849. if process_rule["mode"] == "custom":
  850. dataset_process_rule = DatasetProcessRule(
  851. dataset_id=dataset.id,
  852. mode=process_rule["mode"],
  853. rules=json.dumps(process_rule["rules"]),
  854. created_by=account.id
  855. )
  856. elif process_rule["mode"] == "automatic":
  857. dataset_process_rule = DatasetProcessRule(
  858. dataset_id=dataset.id,
  859. mode=process_rule["mode"],
  860. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  861. created_by=account.id
  862. )
  863. db.session.add(dataset_process_rule)
  864. db.session.commit()
  865. document.dataset_process_rule_id = dataset_process_rule.id
  866. # update document data source
  867. if document_data.get('data_source'):
  868. file_name = ''
  869. data_source_info = {}
  870. if document_data["data_source"]["type"] == "upload_file":
  871. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  872. for file_id in upload_file_list:
  873. file = db.session.query(UploadFile).filter(
  874. UploadFile.tenant_id == dataset.tenant_id,
  875. UploadFile.id == file_id
  876. ).first()
  877. # raise error if file not found
  878. if not file:
  879. raise FileNotExistsError()
  880. file_name = file.name
  881. data_source_info = {
  882. "upload_file_id": file_id,
  883. }
  884. elif document_data["data_source"]["type"] == "notion_import":
  885. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  886. for notion_info in notion_info_list:
  887. workspace_id = notion_info['workspace_id']
  888. data_source_binding = DataSourceOauthBinding.query.filter(
  889. db.and_(
  890. DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
  891. DataSourceOauthBinding.provider == 'notion',
  892. DataSourceOauthBinding.disabled == False,
  893. DataSourceOauthBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  894. )
  895. ).first()
  896. if not data_source_binding:
  897. raise ValueError('Data source binding not found.')
  898. for page in notion_info['pages']:
  899. data_source_info = {
  900. "notion_workspace_id": workspace_id,
  901. "notion_page_id": page['page_id'],
  902. "notion_page_icon": page['page_icon'],
  903. "type": page['type']
  904. }
  905. elif document_data["data_source"]["type"] == "website_crawl":
  906. website_info = document_data["data_source"]['info_list']['website_info_list']
  907. urls = website_info['urls']
  908. for url in urls:
  909. data_source_info = {
  910. 'url': url,
  911. 'provider': website_info['provider'],
  912. 'job_id': website_info['job_id'],
  913. 'only_main_content': website_info.get('only_main_content', False),
  914. 'mode': 'crawl',
  915. }
  916. document.data_source_type = document_data["data_source"]["type"]
  917. document.data_source_info = json.dumps(data_source_info)
  918. document.name = file_name
  919. # update document to be waiting
  920. document.indexing_status = 'waiting'
  921. document.completed_at = None
  922. document.processing_started_at = None
  923. document.parsing_completed_at = None
  924. document.cleaning_completed_at = None
  925. document.splitting_completed_at = None
  926. document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  927. document.created_from = created_from
  928. document.doc_form = document_data['doc_form']
  929. db.session.add(document)
  930. db.session.commit()
  931. # update document segment
  932. update_params = {
  933. DocumentSegment.status: 're_segment'
  934. }
  935. DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
  936. db.session.commit()
  937. # trigger async task
  938. document_indexing_update_task.delay(document.dataset_id, document.id)
  939. return document
  940. @staticmethod
  941. def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
  942. features = FeatureService.get_features(current_user.current_tenant_id)
  943. if features.billing.enabled:
  944. count = 0
  945. if document_data["data_source"]["type"] == "upload_file":
  946. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  947. count = len(upload_file_list)
  948. elif document_data["data_source"]["type"] == "notion_import":
  949. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  950. for notion_info in notion_info_list:
  951. count = count + len(notion_info['pages'])
  952. elif document_data["data_source"]["type"] == "website_crawl":
  953. website_info = document_data["data_source"]['info_list']['website_info_list']
  954. count = len(website_info['urls'])
  955. batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
  956. if count > batch_upload_limit:
  957. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  958. DocumentService.check_documents_upload_quota(count, features)
  959. embedding_model = None
  960. dataset_collection_binding_id = None
  961. retrieval_model = None
  962. if document_data['indexing_technique'] == 'high_quality':
  963. model_manager = ModelManager()
  964. embedding_model = model_manager.get_default_model_instance(
  965. tenant_id=current_user.current_tenant_id,
  966. model_type=ModelType.TEXT_EMBEDDING
  967. )
  968. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  969. embedding_model.provider,
  970. embedding_model.model
  971. )
  972. dataset_collection_binding_id = dataset_collection_binding.id
  973. if document_data.get('retrieval_model'):
  974. retrieval_model = document_data['retrieval_model']
  975. else:
  976. default_retrieval_model = {
  977. 'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
  978. 'reranking_enable': False,
  979. 'reranking_model': {
  980. 'reranking_provider_name': '',
  981. 'reranking_model_name': ''
  982. },
  983. 'top_k': 2,
  984. 'score_threshold_enabled': False
  985. }
  986. retrieval_model = default_retrieval_model
  987. # save dataset
  988. dataset = Dataset(
  989. tenant_id=tenant_id,
  990. name='',
  991. data_source_type=document_data["data_source"]["type"],
  992. indexing_technique=document_data["indexing_technique"],
  993. created_by=account.id,
  994. embedding_model=embedding_model.model if embedding_model else None,
  995. embedding_model_provider=embedding_model.provider if embedding_model else None,
  996. collection_binding_id=dataset_collection_binding_id,
  997. retrieval_model=retrieval_model
  998. )
  999. db.session.add(dataset)
  1000. db.session.flush()
  1001. documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
  1002. cut_length = 18
  1003. cut_name = documents[0].name[:cut_length]
  1004. dataset.name = cut_name + '...'
  1005. dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
  1006. db.session.commit()
  1007. return dataset, documents, batch
  1008. @classmethod
  1009. def document_create_args_validate(cls, args: dict):
  1010. if 'original_document_id' not in args or not args['original_document_id']:
  1011. DocumentService.data_source_args_validate(args)
  1012. DocumentService.process_rule_args_validate(args)
  1013. else:
  1014. if ('data_source' not in args and not args['data_source']) \
  1015. and ('process_rule' not in args and not args['process_rule']):
  1016. raise ValueError("Data source or Process rule is required")
  1017. else:
  1018. if args.get('data_source'):
  1019. DocumentService.data_source_args_validate(args)
  1020. if args.get('process_rule'):
  1021. DocumentService.process_rule_args_validate(args)
  1022. @classmethod
  1023. def data_source_args_validate(cls, args: dict):
  1024. if 'data_source' not in args or not args['data_source']:
  1025. raise ValueError("Data source is required")
  1026. if not isinstance(args['data_source'], dict):
  1027. raise ValueError("Data source is invalid")
  1028. if 'type' not in args['data_source'] or not args['data_source']['type']:
  1029. raise ValueError("Data source type is required")
  1030. if args['data_source']['type'] not in Document.DATA_SOURCES:
  1031. raise ValueError("Data source type is invalid")
  1032. if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
  1033. raise ValueError("Data source info is required")
  1034. if args['data_source']['type'] == 'upload_file':
  1035. if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  1036. 'file_info_list']:
  1037. raise ValueError("File source info is required")
  1038. if args['data_source']['type'] == 'notion_import':
  1039. if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  1040. 'notion_info_list']:
  1041. raise ValueError("Notion source info is required")
  1042. if args['data_source']['type'] == 'website_crawl':
  1043. if 'website_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  1044. 'website_info_list']:
  1045. raise ValueError("Website source info is required")
  1046. @classmethod
  1047. def process_rule_args_validate(cls, args: dict):
  1048. if 'process_rule' not in args or not args['process_rule']:
  1049. raise ValueError("Process rule is required")
  1050. if not isinstance(args['process_rule'], dict):
  1051. raise ValueError("Process rule is invalid")
  1052. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  1053. raise ValueError("Process rule mode is required")
  1054. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  1055. raise ValueError("Process rule mode is invalid")
  1056. if args['process_rule']['mode'] == 'automatic':
  1057. args['process_rule']['rules'] = {}
  1058. else:
  1059. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  1060. raise ValueError("Process rule rules is required")
  1061. if not isinstance(args['process_rule']['rules'], dict):
  1062. raise ValueError("Process rule rules is invalid")
  1063. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  1064. or args['process_rule']['rules']['pre_processing_rules'] is None:
  1065. raise ValueError("Process rule pre_processing_rules is required")
  1066. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  1067. raise ValueError("Process rule pre_processing_rules is invalid")
  1068. unique_pre_processing_rule_dicts = {}
  1069. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  1070. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  1071. raise ValueError("Process rule pre_processing_rules id is required")
  1072. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  1073. raise ValueError("Process rule pre_processing_rules id is invalid")
  1074. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  1075. raise ValueError("Process rule pre_processing_rules enabled is required")
  1076. if not isinstance(pre_processing_rule['enabled'], bool):
  1077. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  1078. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  1079. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  1080. if 'segmentation' not in args['process_rule']['rules'] \
  1081. or args['process_rule']['rules']['segmentation'] is None:
  1082. raise ValueError("Process rule segmentation is required")
  1083. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  1084. raise ValueError("Process rule segmentation is invalid")
  1085. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  1086. or not args['process_rule']['rules']['segmentation']['separator']:
  1087. raise ValueError("Process rule segmentation separator is required")
  1088. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  1089. raise ValueError("Process rule segmentation separator is invalid")
  1090. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  1091. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  1092. raise ValueError("Process rule segmentation max_tokens is required")
  1093. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  1094. raise ValueError("Process rule segmentation max_tokens is invalid")
  1095. @classmethod
  1096. def estimate_args_validate(cls, args: dict):
  1097. if 'info_list' not in args or not args['info_list']:
  1098. raise ValueError("Data source info is required")
  1099. if not isinstance(args['info_list'], dict):
  1100. raise ValueError("Data info is invalid")
  1101. if 'process_rule' not in args or not args['process_rule']:
  1102. raise ValueError("Process rule is required")
  1103. if not isinstance(args['process_rule'], dict):
  1104. raise ValueError("Process rule is invalid")
  1105. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  1106. raise ValueError("Process rule mode is required")
  1107. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  1108. raise ValueError("Process rule mode is invalid")
  1109. if args['process_rule']['mode'] == 'automatic':
  1110. args['process_rule']['rules'] = {}
  1111. else:
  1112. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  1113. raise ValueError("Process rule rules is required")
  1114. if not isinstance(args['process_rule']['rules'], dict):
  1115. raise ValueError("Process rule rules is invalid")
  1116. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  1117. or args['process_rule']['rules']['pre_processing_rules'] is None:
  1118. raise ValueError("Process rule pre_processing_rules is required")
  1119. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  1120. raise ValueError("Process rule pre_processing_rules is invalid")
  1121. unique_pre_processing_rule_dicts = {}
  1122. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  1123. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  1124. raise ValueError("Process rule pre_processing_rules id is required")
  1125. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  1126. raise ValueError("Process rule pre_processing_rules id is invalid")
  1127. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  1128. raise ValueError("Process rule pre_processing_rules enabled is required")
  1129. if not isinstance(pre_processing_rule['enabled'], bool):
  1130. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  1131. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  1132. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  1133. if 'segmentation' not in args['process_rule']['rules'] \
  1134. or args['process_rule']['rules']['segmentation'] is None:
  1135. raise ValueError("Process rule segmentation is required")
  1136. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  1137. raise ValueError("Process rule segmentation is invalid")
  1138. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  1139. or not args['process_rule']['rules']['segmentation']['separator']:
  1140. raise ValueError("Process rule segmentation separator is required")
  1141. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  1142. raise ValueError("Process rule segmentation separator is invalid")
  1143. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  1144. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  1145. raise ValueError("Process rule segmentation max_tokens is required")
  1146. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  1147. raise ValueError("Process rule segmentation max_tokens is invalid")
  1148. class SegmentService:
  1149. @classmethod
  1150. def segment_create_args_validate(cls, args: dict, document: Document):
  1151. if document.doc_form == 'qa_model':
  1152. if 'answer' not in args or not args['answer']:
  1153. raise ValueError("Answer is required")
  1154. if not args['answer'].strip():
  1155. raise ValueError("Answer is empty")
  1156. if 'content' not in args or not args['content'] or not args['content'].strip():
  1157. raise ValueError("Content is empty")
  1158. @classmethod
  1159. def create_segment(cls, args: dict, document: Document, dataset: Dataset):
  1160. content = args['content']
  1161. doc_id = str(uuid.uuid4())
  1162. segment_hash = helper.generate_text_hash(content)
  1163. tokens = 0
  1164. if dataset.indexing_technique == 'high_quality':
  1165. model_manager = ModelManager()
  1166. embedding_model = model_manager.get_model_instance(
  1167. tenant_id=current_user.current_tenant_id,
  1168. provider=dataset.embedding_model_provider,
  1169. model_type=ModelType.TEXT_EMBEDDING,
  1170. model=dataset.embedding_model
  1171. )
  1172. # calc embedding use tokens
  1173. tokens = embedding_model.get_text_embedding_num_tokens(
  1174. texts=[content]
  1175. )
  1176. lock_name = 'add_segment_lock_document_id_{}'.format(document.id)
  1177. with redis_client.lock(lock_name, timeout=600):
  1178. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  1179. DocumentSegment.document_id == document.id
  1180. ).scalar()
  1181. segment_document = DocumentSegment(
  1182. tenant_id=current_user.current_tenant_id,
  1183. dataset_id=document.dataset_id,
  1184. document_id=document.id,
  1185. index_node_id=doc_id,
  1186. index_node_hash=segment_hash,
  1187. position=max_position + 1 if max_position else 1,
  1188. content=content,
  1189. word_count=len(content),
  1190. tokens=tokens,
  1191. status='completed',
  1192. indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1193. completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1194. created_by=current_user.id
  1195. )
  1196. if document.doc_form == 'qa_model':
  1197. segment_document.answer = args['answer']
  1198. db.session.add(segment_document)
  1199. db.session.commit()
  1200. # save vector index
  1201. try:
  1202. VectorService.create_segments_vector([args['keywords']], [segment_document], dataset)
  1203. except Exception as e:
  1204. logging.exception("create segment index failed")
  1205. segment_document.enabled = False
  1206. segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1207. segment_document.status = 'error'
  1208. segment_document.error = str(e)
  1209. db.session.commit()
  1210. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
  1211. return segment
  1212. @classmethod
  1213. def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
  1214. lock_name = 'multi_add_segment_lock_document_id_{}'.format(document.id)
  1215. with redis_client.lock(lock_name, timeout=600):
  1216. embedding_model = None
  1217. if dataset.indexing_technique == 'high_quality':
  1218. model_manager = ModelManager()
  1219. embedding_model = model_manager.get_model_instance(
  1220. tenant_id=current_user.current_tenant_id,
  1221. provider=dataset.embedding_model_provider,
  1222. model_type=ModelType.TEXT_EMBEDDING,
  1223. model=dataset.embedding_model
  1224. )
  1225. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  1226. DocumentSegment.document_id == document.id
  1227. ).scalar()
  1228. pre_segment_data_list = []
  1229. segment_data_list = []
  1230. keywords_list = []
  1231. for segment_item in segments:
  1232. content = segment_item['content']
  1233. doc_id = str(uuid.uuid4())
  1234. segment_hash = helper.generate_text_hash(content)
  1235. tokens = 0
  1236. if dataset.indexing_technique == 'high_quality' and embedding_model:
  1237. # calc embedding use tokens
  1238. tokens = embedding_model.get_text_embedding_num_tokens(
  1239. texts=[content]
  1240. )
  1241. segment_document = DocumentSegment(
  1242. tenant_id=current_user.current_tenant_id,
  1243. dataset_id=document.dataset_id,
  1244. document_id=document.id,
  1245. index_node_id=doc_id,
  1246. index_node_hash=segment_hash,
  1247. position=max_position + 1 if max_position else 1,
  1248. content=content,
  1249. word_count=len(content),
  1250. tokens=tokens,
  1251. status='completed',
  1252. indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1253. completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1254. created_by=current_user.id
  1255. )
  1256. if document.doc_form == 'qa_model':
  1257. segment_document.answer = segment_item['answer']
  1258. db.session.add(segment_document)
  1259. segment_data_list.append(segment_document)
  1260. pre_segment_data_list.append(segment_document)
  1261. keywords_list.append(segment_item['keywords'])
  1262. try:
  1263. # save vector index
  1264. VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)
  1265. except Exception as e:
  1266. logging.exception("create segment index failed")
  1267. for segment_document in segment_data_list:
  1268. segment_document.enabled = False
  1269. segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1270. segment_document.status = 'error'
  1271. segment_document.error = str(e)
  1272. db.session.commit()
  1273. return segment_data_list
  1274. @classmethod
  1275. def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
  1276. indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
  1277. cache_result = redis_client.get(indexing_cache_key)
  1278. if cache_result is not None:
  1279. raise ValueError("Segment is indexing, please try again later")
  1280. if 'enabled' in args and args['enabled'] is not None:
  1281. action = args['enabled']
  1282. if segment.enabled != action:
  1283. if not action:
  1284. segment.enabled = action
  1285. segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1286. segment.disabled_by = current_user.id
  1287. db.session.add(segment)
  1288. db.session.commit()
  1289. # Set cache to prevent indexing the same segment multiple times
  1290. redis_client.setex(indexing_cache_key, 600, 1)
  1291. disable_segment_from_index_task.delay(segment.id)
  1292. return segment
  1293. if not segment.enabled:
  1294. if 'enabled' in args and args['enabled'] is not None:
  1295. if not args['enabled']:
  1296. raise ValueError("Can't update disabled segment")
  1297. else:
  1298. raise ValueError("Can't update disabled segment")
  1299. try:
  1300. content = args['content']
  1301. if segment.content == content:
  1302. if document.doc_form == 'qa_model':
  1303. segment.answer = args['answer']
  1304. if args.get('keywords'):
  1305. segment.keywords = args['keywords']
  1306. segment.enabled = True
  1307. segment.disabled_at = None
  1308. segment.disabled_by = None
  1309. db.session.add(segment)
  1310. db.session.commit()
  1311. # update segment index task
  1312. if args['keywords']:
  1313. keyword = Keyword(dataset)
  1314. keyword.delete_by_ids([segment.index_node_id])
  1315. document = RAGDocument(
  1316. page_content=segment.content,
  1317. metadata={
  1318. "doc_id": segment.index_node_id,
  1319. "doc_hash": segment.index_node_hash,
  1320. "document_id": segment.document_id,
  1321. "dataset_id": segment.dataset_id,
  1322. }
  1323. )
  1324. keyword.add_texts([document], keywords_list=[args['keywords']])
  1325. else:
  1326. segment_hash = helper.generate_text_hash(content)
  1327. tokens = 0
  1328. if dataset.indexing_technique == 'high_quality':
  1329. model_manager = ModelManager()
  1330. embedding_model = model_manager.get_model_instance(
  1331. tenant_id=current_user.current_tenant_id,
  1332. provider=dataset.embedding_model_provider,
  1333. model_type=ModelType.TEXT_EMBEDDING,
  1334. model=dataset.embedding_model
  1335. )
  1336. # calc embedding use tokens
  1337. tokens = embedding_model.get_text_embedding_num_tokens(
  1338. texts=[content]
  1339. )
  1340. segment.content = content
  1341. segment.index_node_hash = segment_hash
  1342. segment.word_count = len(content)
  1343. segment.tokens = tokens
  1344. segment.status = 'completed'
  1345. segment.indexing_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1346. segment.completed_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1347. segment.updated_by = current_user.id
  1348. segment.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1349. segment.enabled = True
  1350. segment.disabled_at = None
  1351. segment.disabled_by = None
  1352. if document.doc_form == 'qa_model':
  1353. segment.answer = args['answer']
  1354. db.session.add(segment)
  1355. db.session.commit()
  1356. # update segment vector index
  1357. VectorService.update_segment_vector(args['keywords'], segment, dataset)
  1358. except Exception as e:
  1359. logging.exception("update segment index failed")
  1360. segment.enabled = False
  1361. segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1362. segment.status = 'error'
  1363. segment.error = str(e)
  1364. db.session.commit()
  1365. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
  1366. return segment
  1367. @classmethod
  1368. def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
  1369. indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)
  1370. cache_result = redis_client.get(indexing_cache_key)
  1371. if cache_result is not None:
  1372. raise ValueError("Segment is deleting.")
  1373. # enabled segment need to delete index
  1374. if segment.enabled:
  1375. # send delete segment index task
  1376. redis_client.setex(indexing_cache_key, 600, 1)
  1377. delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
  1378. db.session.delete(segment)
  1379. db.session.commit()
  1380. class DatasetCollectionBindingService:
  1381. @classmethod
  1382. def get_dataset_collection_binding(
  1383. cls, provider_name: str, model_name: str,
  1384. collection_type: str = 'dataset'
  1385. ) -> DatasetCollectionBinding:
  1386. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1387. filter(
  1388. DatasetCollectionBinding.provider_name == provider_name,
  1389. DatasetCollectionBinding.model_name == model_name,
  1390. DatasetCollectionBinding.type == collection_type
  1391. ). \
  1392. order_by(DatasetCollectionBinding.created_at). \
  1393. first()
  1394. if not dataset_collection_binding:
  1395. dataset_collection_binding = DatasetCollectionBinding(
  1396. provider_name=provider_name,
  1397. model_name=model_name,
  1398. collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
  1399. type=collection_type
  1400. )
  1401. db.session.add(dataset_collection_binding)
  1402. db.session.commit()
  1403. return dataset_collection_binding
  1404. @classmethod
  1405. def get_dataset_collection_binding_by_id_and_type(
  1406. cls, collection_binding_id: str,
  1407. collection_type: str = 'dataset'
  1408. ) -> DatasetCollectionBinding:
  1409. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1410. filter(
  1411. DatasetCollectionBinding.id == collection_binding_id,
  1412. DatasetCollectionBinding.type == collection_type
  1413. ). \
  1414. order_by(DatasetCollectionBinding.created_at). \
  1415. first()
  1416. return dataset_collection_binding
  1417. class DatasetPermissionService:
  1418. @classmethod
  1419. def get_dataset_partial_member_list(cls, dataset_id):
  1420. user_list_query = db.session.query(
  1421. DatasetPermission.account_id,
  1422. ).filter(
  1423. DatasetPermission.dataset_id == dataset_id
  1424. ).all()
  1425. user_list = []
  1426. for user in user_list_query:
  1427. user_list.append(user.account_id)
  1428. return user_list
  1429. @classmethod
  1430. def update_partial_member_list(cls, tenant_id, dataset_id, user_list):
  1431. try:
  1432. db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
  1433. permissions = []
  1434. for user in user_list:
  1435. permission = DatasetPermission(
  1436. tenant_id=tenant_id,
  1437. dataset_id=dataset_id,
  1438. account_id=user['user_id'],
  1439. )
  1440. permissions.append(permission)
  1441. db.session.add_all(permissions)
  1442. db.session.commit()
  1443. except Exception as e:
  1444. db.session.rollback()
  1445. raise e
  1446. @classmethod
  1447. def check_permission(cls, user, dataset, requested_permission, requested_partial_member_list):
  1448. if not user.is_dataset_editor:
  1449. raise NoPermissionError('User does not have permission to edit this dataset.')
  1450. if user.is_dataset_operator and dataset.permission != requested_permission:
  1451. raise NoPermissionError('Dataset operators cannot change the dataset permissions.')
  1452. if user.is_dataset_operator and requested_permission == 'partial_members':
  1453. if not requested_partial_member_list:
  1454. raise ValueError('Partial member list is required when setting to partial members.')
  1455. local_member_list = cls.get_dataset_partial_member_list(dataset.id)
  1456. request_member_list = [user['user_id'] for user in requested_partial_member_list]
  1457. if set(local_member_list) != set(request_member_list):
  1458. raise ValueError('Dataset operators cannot change the dataset permissions.')
  1459. @classmethod
  1460. def clear_partial_member_list(cls, dataset_id):
  1461. try:
  1462. db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
  1463. db.session.commit()
  1464. except Exception as e:
  1465. db.session.rollback()
  1466. raise e