123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188 |
- import threading
- from typing import Optional
- from flask import Flask, current_app
- from core.rag.data_post_processor.data_post_processor import DataPostProcessor
- from core.rag.datasource.keyword.keyword_factory import Keyword
- from core.rag.datasource.vdb.vector_factory import Vector
- from core.rag.retrieval.retrival_methods import RetrievalMethod
- from extensions.ext_database import db
- from models.dataset import Dataset
- default_retrieval_model = {
- 'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
- 'reranking_enable': False,
- 'reranking_model': {
- 'reranking_provider_name': '',
- 'reranking_model_name': ''
- },
- 'top_k': 2,
- 'score_threshold_enabled': False
- }
- class RetrievalService:
- @classmethod
- def retrieve(cls, retrival_method: str, dataset_id: str, query: str,
- top_k: int, score_threshold: Optional[float] = .0, reranking_model: Optional[dict] = None):
- dataset = db.session.query(Dataset).filter(
- Dataset.id == dataset_id
- ).first()
- if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:
- return []
- all_documents = []
- threads = []
- exceptions = []
- # retrieval_model source with keyword
- if retrival_method == 'keyword_search':
- keyword_thread = threading.Thread(target=RetrievalService.keyword_search, kwargs={
- 'flask_app': current_app._get_current_object(),
- 'dataset_id': dataset_id,
- 'query': query,
- 'top_k': top_k,
- 'all_documents': all_documents,
- 'exceptions': exceptions,
- })
- threads.append(keyword_thread)
- keyword_thread.start()
- # retrieval_model source with semantic
- if RetrievalMethod.is_support_semantic_search(retrival_method):
- embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
- 'flask_app': current_app._get_current_object(),
- 'dataset_id': dataset_id,
- 'query': query,
- 'top_k': top_k,
- 'score_threshold': score_threshold,
- 'reranking_model': reranking_model,
- 'all_documents': all_documents,
- 'retrival_method': retrival_method,
- 'exceptions': exceptions,
- })
- threads.append(embedding_thread)
- embedding_thread.start()
- # retrieval source with full text
- if RetrievalMethod.is_support_fulltext_search(retrival_method):
- full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
- 'flask_app': current_app._get_current_object(),
- 'dataset_id': dataset_id,
- 'query': query,
- 'retrival_method': retrival_method,
- 'score_threshold': score_threshold,
- 'top_k': top_k,
- 'reranking_model': reranking_model,
- 'all_documents': all_documents,
- 'exceptions': exceptions,
- })
- threads.append(full_text_index_thread)
- full_text_index_thread.start()
- for thread in threads:
- thread.join()
- if exceptions:
- exception_message = ';\n'.join(exceptions)
- raise Exception(exception_message)
- if retrival_method == RetrievalMethod.HYBRID_SEARCH.value:
- data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
- all_documents = data_post_processor.invoke(
- query=query,
- documents=all_documents,
- score_threshold=score_threshold,
- top_n=top_k
- )
- return all_documents
- @classmethod
- def keyword_search(cls, flask_app: Flask, dataset_id: str, query: str,
- top_k: int, all_documents: list, exceptions: list):
- with flask_app.app_context():
- try:
- dataset = db.session.query(Dataset).filter(
- Dataset.id == dataset_id
- ).first()
- keyword = Keyword(
- dataset=dataset
- )
- documents = keyword.search(
- query,
- top_k=top_k
- )
- all_documents.extend(documents)
- except Exception as e:
- exceptions.append(str(e))
- @classmethod
- def embedding_search(cls, flask_app: Flask, dataset_id: str, query: str,
- top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
- all_documents: list, retrival_method: str, exceptions: list):
- with flask_app.app_context():
- try:
- dataset = db.session.query(Dataset).filter(
- Dataset.id == dataset_id
- ).first()
- vector = Vector(
- dataset=dataset
- )
- documents = vector.search_by_vector(
- query,
- search_type='similarity_score_threshold',
- top_k=top_k,
- score_threshold=score_threshold,
- filter={
- 'group_id': [dataset.id]
- }
- )
- if documents:
- if reranking_model and retrival_method == RetrievalMethod.SEMANTIC_SEARCH.value:
- data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
- all_documents.extend(data_post_processor.invoke(
- query=query,
- documents=documents,
- score_threshold=score_threshold,
- top_n=len(documents)
- ))
- else:
- all_documents.extend(documents)
- except Exception as e:
- exceptions.append(str(e))
- @classmethod
- def full_text_index_search(cls, flask_app: Flask, dataset_id: str, query: str,
- top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
- all_documents: list, retrival_method: str, exceptions: list):
- with flask_app.app_context():
- try:
- dataset = db.session.query(Dataset).filter(
- Dataset.id == dataset_id
- ).first()
- vector_processor = Vector(
- dataset=dataset,
- )
- documents = vector_processor.search_by_full_text(
- query,
- top_k=top_k
- )
- if documents:
- if reranking_model and retrival_method == RetrievalMethod.FULL_TEXT_SEARCH.value:
- data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
- all_documents.extend(data_post_processor.invoke(
- query=query,
- documents=documents,
- score_threshold=score_threshold,
- top_n=len(documents)
- ))
- else:
- all_documents.extend(documents)
- except Exception as e:
- exceptions.append(str(e))
|