retrieval_service.py 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188
  1. import threading
  2. from typing import Optional
  3. from flask import Flask, current_app
  4. from core.rag.data_post_processor.data_post_processor import DataPostProcessor
  5. from core.rag.datasource.keyword.keyword_factory import Keyword
  6. from core.rag.datasource.vdb.vector_factory import Vector
  7. from core.rag.retrieval.retrival_methods import RetrievalMethod
  8. from extensions.ext_database import db
  9. from models.dataset import Dataset
  10. default_retrieval_model = {
  11. 'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
  12. 'reranking_enable': False,
  13. 'reranking_model': {
  14. 'reranking_provider_name': '',
  15. 'reranking_model_name': ''
  16. },
  17. 'top_k': 2,
  18. 'score_threshold_enabled': False
  19. }
  20. class RetrievalService:
  21. @classmethod
  22. def retrieve(cls, retrival_method: str, dataset_id: str, query: str,
  23. top_k: int, score_threshold: Optional[float] = .0, reranking_model: Optional[dict] = None):
  24. dataset = db.session.query(Dataset).filter(
  25. Dataset.id == dataset_id
  26. ).first()
  27. if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:
  28. return []
  29. all_documents = []
  30. threads = []
  31. exceptions = []
  32. # retrieval_model source with keyword
  33. if retrival_method == 'keyword_search':
  34. keyword_thread = threading.Thread(target=RetrievalService.keyword_search, kwargs={
  35. 'flask_app': current_app._get_current_object(),
  36. 'dataset_id': dataset_id,
  37. 'query': query,
  38. 'top_k': top_k,
  39. 'all_documents': all_documents,
  40. 'exceptions': exceptions,
  41. })
  42. threads.append(keyword_thread)
  43. keyword_thread.start()
  44. # retrieval_model source with semantic
  45. if RetrievalMethod.is_support_semantic_search(retrival_method):
  46. embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
  47. 'flask_app': current_app._get_current_object(),
  48. 'dataset_id': dataset_id,
  49. 'query': query,
  50. 'top_k': top_k,
  51. 'score_threshold': score_threshold,
  52. 'reranking_model': reranking_model,
  53. 'all_documents': all_documents,
  54. 'retrival_method': retrival_method,
  55. 'exceptions': exceptions,
  56. })
  57. threads.append(embedding_thread)
  58. embedding_thread.start()
  59. # retrieval source with full text
  60. if RetrievalMethod.is_support_fulltext_search(retrival_method):
  61. full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
  62. 'flask_app': current_app._get_current_object(),
  63. 'dataset_id': dataset_id,
  64. 'query': query,
  65. 'retrival_method': retrival_method,
  66. 'score_threshold': score_threshold,
  67. 'top_k': top_k,
  68. 'reranking_model': reranking_model,
  69. 'all_documents': all_documents,
  70. 'exceptions': exceptions,
  71. })
  72. threads.append(full_text_index_thread)
  73. full_text_index_thread.start()
  74. for thread in threads:
  75. thread.join()
  76. if exceptions:
  77. exception_message = ';\n'.join(exceptions)
  78. raise Exception(exception_message)
  79. if retrival_method == RetrievalMethod.HYBRID_SEARCH.value:
  80. data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
  81. all_documents = data_post_processor.invoke(
  82. query=query,
  83. documents=all_documents,
  84. score_threshold=score_threshold,
  85. top_n=top_k
  86. )
  87. return all_documents
  88. @classmethod
  89. def keyword_search(cls, flask_app: Flask, dataset_id: str, query: str,
  90. top_k: int, all_documents: list, exceptions: list):
  91. with flask_app.app_context():
  92. try:
  93. dataset = db.session.query(Dataset).filter(
  94. Dataset.id == dataset_id
  95. ).first()
  96. keyword = Keyword(
  97. dataset=dataset
  98. )
  99. documents = keyword.search(
  100. query,
  101. top_k=top_k
  102. )
  103. all_documents.extend(documents)
  104. except Exception as e:
  105. exceptions.append(str(e))
  106. @classmethod
  107. def embedding_search(cls, flask_app: Flask, dataset_id: str, query: str,
  108. top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
  109. all_documents: list, retrival_method: str, exceptions: list):
  110. with flask_app.app_context():
  111. try:
  112. dataset = db.session.query(Dataset).filter(
  113. Dataset.id == dataset_id
  114. ).first()
  115. vector = Vector(
  116. dataset=dataset
  117. )
  118. documents = vector.search_by_vector(
  119. query,
  120. search_type='similarity_score_threshold',
  121. top_k=top_k,
  122. score_threshold=score_threshold,
  123. filter={
  124. 'group_id': [dataset.id]
  125. }
  126. )
  127. if documents:
  128. if reranking_model and retrival_method == RetrievalMethod.SEMANTIC_SEARCH.value:
  129. data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
  130. all_documents.extend(data_post_processor.invoke(
  131. query=query,
  132. documents=documents,
  133. score_threshold=score_threshold,
  134. top_n=len(documents)
  135. ))
  136. else:
  137. all_documents.extend(documents)
  138. except Exception as e:
  139. exceptions.append(str(e))
  140. @classmethod
  141. def full_text_index_search(cls, flask_app: Flask, dataset_id: str, query: str,
  142. top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
  143. all_documents: list, retrival_method: str, exceptions: list):
  144. with flask_app.app_context():
  145. try:
  146. dataset = db.session.query(Dataset).filter(
  147. Dataset.id == dataset_id
  148. ).first()
  149. vector_processor = Vector(
  150. dataset=dataset,
  151. )
  152. documents = vector_processor.search_by_full_text(
  153. query,
  154. top_k=top_k
  155. )
  156. if documents:
  157. if reranking_model and retrival_method == RetrievalMethod.FULL_TEXT_SEARCH.value:
  158. data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
  159. all_documents.extend(data_post_processor.invoke(
  160. query=query,
  161. documents=documents,
  162. score_threshold=score_threshold,
  163. top_n=len(documents)
  164. ))
  165. else:
  166. all_documents.extend(documents)
  167. except Exception as e:
  168. exceptions.append(str(e))