cot_agent_runner.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445
  1. import json
  2. from abc import ABC, abstractmethod
  3. from collections.abc import Generator
  4. from typing import Optional, Union
  5. from core.agent.base_agent_runner import BaseAgentRunner
  6. from core.agent.entities import AgentScratchpadUnit
  7. from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
  8. from core.app.apps.base_app_queue_manager import PublishFrom
  9. from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
  10. from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
  11. from core.model_runtime.entities.message_entities import (
  12. AssistantPromptMessage,
  13. PromptMessage,
  14. ToolPromptMessage,
  15. UserPromptMessage,
  16. )
  17. from core.ops.ops_trace_manager import TraceQueueManager
  18. from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
  19. from core.tools.entities.tool_entities import ToolInvokeMeta
  20. from core.tools.tool.tool import Tool
  21. from core.tools.tool_engine import ToolEngine
  22. from models.model import Message
  23. class CotAgentRunner(BaseAgentRunner, ABC):
  24. _is_first_iteration = True
  25. _ignore_observation_providers = ['wenxin']
  26. _historic_prompt_messages: list[PromptMessage] = None
  27. _agent_scratchpad: list[AgentScratchpadUnit] = None
  28. _instruction: str = None
  29. _query: str = None
  30. _prompt_messages_tools: list[PromptMessage] = None
  31. def run(self, message: Message,
  32. query: str,
  33. inputs: dict[str, str],
  34. ) -> Union[Generator, LLMResult]:
  35. """
  36. Run Cot agent application
  37. """
  38. app_generate_entity = self.application_generate_entity
  39. self._repack_app_generate_entity(app_generate_entity)
  40. self._init_react_state(query)
  41. trace_manager = app_generate_entity.trace_manager
  42. # check model mode
  43. if 'Observation' not in app_generate_entity.model_conf.stop:
  44. if app_generate_entity.model_conf.provider not in self._ignore_observation_providers:
  45. app_generate_entity.model_conf.stop.append('Observation')
  46. app_config = self.app_config
  47. # init instruction
  48. inputs = inputs or {}
  49. instruction = app_config.prompt_template.simple_prompt_template
  50. self._instruction = self._fill_in_inputs_from_external_data_tools(
  51. instruction, inputs)
  52. iteration_step = 1
  53. max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
  54. # convert tools into ModelRuntime Tool format
  55. tool_instances, self._prompt_messages_tools = self._init_prompt_tools()
  56. function_call_state = True
  57. llm_usage = {
  58. 'usage': None
  59. }
  60. final_answer = ''
  61. def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage):
  62. if not final_llm_usage_dict['usage']:
  63. final_llm_usage_dict['usage'] = usage
  64. else:
  65. llm_usage = final_llm_usage_dict['usage']
  66. llm_usage.prompt_tokens += usage.prompt_tokens
  67. llm_usage.completion_tokens += usage.completion_tokens
  68. llm_usage.prompt_price += usage.prompt_price
  69. llm_usage.completion_price += usage.completion_price
  70. model_instance = self.model_instance
  71. while function_call_state and iteration_step <= max_iteration_steps:
  72. # continue to run until there is not any tool call
  73. function_call_state = False
  74. if iteration_step == max_iteration_steps:
  75. # the last iteration, remove all tools
  76. self._prompt_messages_tools = []
  77. message_file_ids = []
  78. agent_thought = self.create_agent_thought(
  79. message_id=message.id,
  80. message='',
  81. tool_name='',
  82. tool_input='',
  83. messages_ids=message_file_ids
  84. )
  85. if iteration_step > 1:
  86. self.queue_manager.publish(QueueAgentThoughtEvent(
  87. agent_thought_id=agent_thought.id
  88. ), PublishFrom.APPLICATION_MANAGER)
  89. # recalc llm max tokens
  90. prompt_messages = self._organize_prompt_messages()
  91. self.recalc_llm_max_tokens(self.model_config, prompt_messages)
  92. # invoke model
  93. chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm(
  94. prompt_messages=prompt_messages,
  95. model_parameters=app_generate_entity.model_conf.parameters,
  96. tools=[],
  97. stop=app_generate_entity.model_conf.stop,
  98. stream=True,
  99. user=self.user_id,
  100. callbacks=[],
  101. )
  102. # check llm result
  103. if not chunks:
  104. raise ValueError("failed to invoke llm")
  105. usage_dict = {}
  106. react_chunks = CotAgentOutputParser.handle_react_stream_output(
  107. chunks, usage_dict)
  108. scratchpad = AgentScratchpadUnit(
  109. agent_response='',
  110. thought='',
  111. action_str='',
  112. observation='',
  113. action=None,
  114. )
  115. # publish agent thought if it's first iteration
  116. if iteration_step == 1:
  117. self.queue_manager.publish(QueueAgentThoughtEvent(
  118. agent_thought_id=agent_thought.id
  119. ), PublishFrom.APPLICATION_MANAGER)
  120. for chunk in react_chunks:
  121. if isinstance(chunk, AgentScratchpadUnit.Action):
  122. action = chunk
  123. # detect action
  124. scratchpad.agent_response += json.dumps(chunk.model_dump())
  125. scratchpad.action_str = json.dumps(chunk.model_dump())
  126. scratchpad.action = action
  127. else:
  128. scratchpad.agent_response += chunk
  129. scratchpad.thought += chunk
  130. yield LLMResultChunk(
  131. model=self.model_config.model,
  132. prompt_messages=prompt_messages,
  133. system_fingerprint='',
  134. delta=LLMResultChunkDelta(
  135. index=0,
  136. message=AssistantPromptMessage(
  137. content=chunk
  138. ),
  139. usage=None
  140. )
  141. )
  142. scratchpad.thought = scratchpad.thought.strip(
  143. ) or 'I am thinking about how to help you'
  144. self._agent_scratchpad.append(scratchpad)
  145. # get llm usage
  146. if 'usage' in usage_dict:
  147. increase_usage(llm_usage, usage_dict['usage'])
  148. else:
  149. usage_dict['usage'] = LLMUsage.empty_usage()
  150. self.save_agent_thought(
  151. agent_thought=agent_thought,
  152. tool_name=scratchpad.action.action_name if scratchpad.action else '',
  153. tool_input={
  154. scratchpad.action.action_name: scratchpad.action.action_input
  155. } if scratchpad.action else {},
  156. tool_invoke_meta={},
  157. thought=scratchpad.thought,
  158. observation='',
  159. answer=scratchpad.agent_response,
  160. messages_ids=[],
  161. llm_usage=usage_dict['usage']
  162. )
  163. if not scratchpad.is_final():
  164. self.queue_manager.publish(QueueAgentThoughtEvent(
  165. agent_thought_id=agent_thought.id
  166. ), PublishFrom.APPLICATION_MANAGER)
  167. if not scratchpad.action:
  168. # failed to extract action, return final answer directly
  169. final_answer = ''
  170. else:
  171. if scratchpad.action.action_name.lower() == "final answer":
  172. # action is final answer, return final answer directly
  173. try:
  174. if isinstance(scratchpad.action.action_input, dict):
  175. final_answer = json.dumps(
  176. scratchpad.action.action_input)
  177. elif isinstance(scratchpad.action.action_input, str):
  178. final_answer = scratchpad.action.action_input
  179. else:
  180. final_answer = f'{scratchpad.action.action_input}'
  181. except json.JSONDecodeError:
  182. final_answer = f'{scratchpad.action.action_input}'
  183. else:
  184. function_call_state = True
  185. # action is tool call, invoke tool
  186. tool_invoke_response, tool_invoke_meta = self._handle_invoke_action(
  187. action=scratchpad.action,
  188. tool_instances=tool_instances,
  189. message_file_ids=message_file_ids,
  190. trace_manager=trace_manager,
  191. )
  192. scratchpad.observation = tool_invoke_response
  193. scratchpad.agent_response = tool_invoke_response
  194. self.save_agent_thought(
  195. agent_thought=agent_thought,
  196. tool_name=scratchpad.action.action_name,
  197. tool_input={
  198. scratchpad.action.action_name: scratchpad.action.action_input},
  199. thought=scratchpad.thought,
  200. observation={
  201. scratchpad.action.action_name: tool_invoke_response},
  202. tool_invoke_meta={
  203. scratchpad.action.action_name: tool_invoke_meta.to_dict()},
  204. answer=scratchpad.agent_response,
  205. messages_ids=message_file_ids,
  206. llm_usage=usage_dict['usage']
  207. )
  208. self.queue_manager.publish(QueueAgentThoughtEvent(
  209. agent_thought_id=agent_thought.id
  210. ), PublishFrom.APPLICATION_MANAGER)
  211. # update prompt tool message
  212. for prompt_tool in self._prompt_messages_tools:
  213. self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
  214. iteration_step += 1
  215. yield LLMResultChunk(
  216. model=model_instance.model,
  217. prompt_messages=prompt_messages,
  218. delta=LLMResultChunkDelta(
  219. index=0,
  220. message=AssistantPromptMessage(
  221. content=final_answer
  222. ),
  223. usage=llm_usage['usage']
  224. ),
  225. system_fingerprint=''
  226. )
  227. # save agent thought
  228. self.save_agent_thought(
  229. agent_thought=agent_thought,
  230. tool_name='',
  231. tool_input={},
  232. tool_invoke_meta={},
  233. thought=final_answer,
  234. observation={},
  235. answer=final_answer,
  236. messages_ids=[]
  237. )
  238. self.update_db_variables(self.variables_pool, self.db_variables_pool)
  239. # publish end event
  240. self.queue_manager.publish(QueueMessageEndEvent(llm_result=LLMResult(
  241. model=model_instance.model,
  242. prompt_messages=prompt_messages,
  243. message=AssistantPromptMessage(
  244. content=final_answer
  245. ),
  246. usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(),
  247. system_fingerprint=''
  248. )), PublishFrom.APPLICATION_MANAGER)
  249. def _handle_invoke_action(self, action: AgentScratchpadUnit.Action,
  250. tool_instances: dict[str, Tool],
  251. message_file_ids: list[str],
  252. trace_manager: Optional[TraceQueueManager] = None
  253. ) -> tuple[str, ToolInvokeMeta]:
  254. """
  255. handle invoke action
  256. :param action: action
  257. :param tool_instances: tool instances
  258. :return: observation, meta
  259. """
  260. # action is tool call, invoke tool
  261. tool_call_name = action.action_name
  262. tool_call_args = action.action_input
  263. tool_instance = tool_instances.get(tool_call_name)
  264. if not tool_instance:
  265. answer = f"there is not a tool named {tool_call_name}"
  266. return answer, ToolInvokeMeta.error_instance(answer)
  267. if isinstance(tool_call_args, str):
  268. try:
  269. tool_call_args = json.loads(tool_call_args)
  270. except json.JSONDecodeError:
  271. pass
  272. # invoke tool
  273. tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
  274. tool=tool_instance,
  275. tool_parameters=tool_call_args,
  276. user_id=self.user_id,
  277. tenant_id=self.tenant_id,
  278. message=self.message,
  279. invoke_from=self.application_generate_entity.invoke_from,
  280. agent_tool_callback=self.agent_callback,
  281. trace_manager=trace_manager,
  282. )
  283. # publish files
  284. for message_file_id, save_as in message_files:
  285. if save_as:
  286. self.variables_pool.set_file(
  287. tool_name=tool_call_name, value=message_file_id, name=save_as)
  288. # publish message file
  289. self.queue_manager.publish(QueueMessageFileEvent(
  290. message_file_id=message_file_id
  291. ), PublishFrom.APPLICATION_MANAGER)
  292. # add message file ids
  293. message_file_ids.append(message_file_id)
  294. return tool_invoke_response, tool_invoke_meta
  295. def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action:
  296. """
  297. convert dict to action
  298. """
  299. return AgentScratchpadUnit.Action(
  300. action_name=action['action'],
  301. action_input=action['action_input']
  302. )
  303. def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: dict) -> str:
  304. """
  305. fill in inputs from external data tools
  306. """
  307. for key, value in inputs.items():
  308. try:
  309. instruction = instruction.replace(f'{{{{{key}}}}}', str(value))
  310. except Exception as e:
  311. continue
  312. return instruction
  313. def _init_react_state(self, query) -> None:
  314. """
  315. init agent scratchpad
  316. """
  317. self._query = query
  318. self._agent_scratchpad = []
  319. self._historic_prompt_messages = self._organize_historic_prompt_messages()
  320. @abstractmethod
  321. def _organize_prompt_messages(self) -> list[PromptMessage]:
  322. """
  323. organize prompt messages
  324. """
  325. def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
  326. """
  327. format assistant message
  328. """
  329. message = ''
  330. for scratchpad in agent_scratchpad:
  331. if scratchpad.is_final():
  332. message += f"Final Answer: {scratchpad.agent_response}"
  333. else:
  334. message += f"Thought: {scratchpad.thought}\n\n"
  335. if scratchpad.action_str:
  336. message += f"Action: {scratchpad.action_str}\n\n"
  337. if scratchpad.observation:
  338. message += f"Observation: {scratchpad.observation}\n\n"
  339. return message
  340. def _organize_historic_prompt_messages(self, current_session_messages: list[PromptMessage] = None) -> list[PromptMessage]:
  341. """
  342. organize historic prompt messages
  343. """
  344. result: list[PromptMessage] = []
  345. scratchpads: list[AgentScratchpadUnit] = []
  346. current_scratchpad: AgentScratchpadUnit = None
  347. for message in self.history_prompt_messages:
  348. if isinstance(message, AssistantPromptMessage):
  349. if not current_scratchpad:
  350. current_scratchpad = AgentScratchpadUnit(
  351. agent_response=message.content,
  352. thought=message.content or 'I am thinking about how to help you',
  353. action_str='',
  354. action=None,
  355. observation=None,
  356. )
  357. scratchpads.append(current_scratchpad)
  358. if message.tool_calls:
  359. try:
  360. current_scratchpad.action = AgentScratchpadUnit.Action(
  361. action_name=message.tool_calls[0].function.name,
  362. action_input=json.loads(
  363. message.tool_calls[0].function.arguments)
  364. )
  365. current_scratchpad.action_str = json.dumps(
  366. current_scratchpad.action.to_dict()
  367. )
  368. except:
  369. pass
  370. elif isinstance(message, ToolPromptMessage):
  371. if current_scratchpad:
  372. current_scratchpad.observation = message.content
  373. elif isinstance(message, UserPromptMessage):
  374. if scratchpads:
  375. result.append(AssistantPromptMessage(
  376. content=self._format_assistant_message(scratchpads)
  377. ))
  378. scratchpads = []
  379. current_scratchpad = None
  380. result.append(message)
  381. if scratchpads:
  382. result.append(AssistantPromptMessage(
  383. content=self._format_assistant_message(scratchpads)
  384. ))
  385. historic_prompts = AgentHistoryPromptTransform(
  386. model_config=self.model_config,
  387. prompt_messages=current_session_messages or [],
  388. history_messages=result,
  389. memory=self.memory
  390. ).get_prompt()
  391. return historic_prompts