Jyong 57729823a0 fix wrong method using (#6459) před 10 měsíci
..
configs 2ba05b041f refactor(myscale):Set the default value of the myscale vector db in DifyConfig. (#6441) před 10 měsíci
constants 6ef401a9f0 feat:add tts-streaming config and future (#5492) před 11 měsíci
controllers afe95fa780 feat: support get workflow task execution status (#6411) před 10 měsíci
core 9e168f9d1c feat: support gpt-4o-mini for openrouter provider (#6447) před 10 měsíci
docker 5236cb1888 fix: kill signal is not passed to the main process (#6159) před 10 měsíci
events d320d1468d Feat/delete file when clean document (#5882) před 10 měsíci
extensions 7c397f5722 update celery beat scheduler time to env (#6352) před 10 měsíci
fields 9622fbb62f feat: app rate limit (#5844) před 10 měsíci
libs 9622fbb62f feat: app rate limit (#5844) před 10 měsíci
migrations 9622fbb62f feat: app rate limit (#5844) před 10 měsíci
models 8a80af39c9 refactor(models&tools): switch to dify_config in models and tools. (#6394) před 10 měsíci
schedule e493ce9981 update clean embedding cache logic (#6434) před 10 měsíci
services 57729823a0 fix wrong method using (#6459) před 10 měsíci
tasks 443e96777b update empty document caused delete exist collection (#6392) před 10 měsíci
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) před 11 měsíci
tests 4a026fa352 Enhancement: add model provider - Amazon Sagemaker (#6255) před 10 měsíci
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) před 11 měsíci
.env.example 7c397f5722 update celery beat scheduler time to env (#6352) před 10 měsíci
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) před 11 měsíci
README.md 2d6624cf9e typo: Update README.md (#5987) před 11 měsíci
app.py d7f75d17cc Chore/remove-unused-code (#5917) před 11 měsíci
commands.py 7c70eb87bc feat: support AnalyticDB vector store (#5586) před 11 měsíci
poetry.lock 4e2fba404d WebscraperTool bypass cloudflare site by cloudscraper (#6337) před 10 měsíci
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) před 11 měsíci
pyproject.toml 4e2fba404d WebscraperTool bypass cloudflare site by cloudscraper (#6337) před 10 měsíci

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
    
    secret_key=$(openssl rand -base64 42)
    sed -i '' "/^SECRET_KEY=/c\\
    SECRET_KEY=${secret_key}" .env
    
  3. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies

    poetry env use 3.10
    poetry install
    

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend

    poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
    
  2. Start Dify web service.

  3. Setup your application by visiting http://localhost:3000...

  4. If you need to debug local async processing, please start the worker service.

    poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion
    

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    poetry install --with dev
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    cd ../
    poetry run -C api bash dev/pytest/pytest_all_tests.sh