indexing_runner.py 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877
  1. import concurrent.futures
  2. import datetime
  3. import json
  4. import logging
  5. import re
  6. import threading
  7. import time
  8. import uuid
  9. from typing import Optional, cast
  10. from flask import Flask, current_app
  11. from flask_login import current_user
  12. from sqlalchemy.orm.exc import ObjectDeletedError
  13. from core.errors.error import ProviderTokenNotInitError
  14. from core.llm_generator.llm_generator import LLMGenerator
  15. from core.model_manager import ModelInstance, ModelManager
  16. from core.model_runtime.entities.model_entities import ModelType, PriceType
  17. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  18. from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
  19. from core.rag.datasource.keyword.keyword_factory import Keyword
  20. from core.rag.docstore.dataset_docstore import DatasetDocumentStore
  21. from core.rag.extractor.entity.extract_setting import ExtractSetting
  22. from core.rag.index_processor.index_processor_base import BaseIndexProcessor
  23. from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
  24. from core.rag.models.document import Document
  25. from core.rag.splitter.fixed_text_splitter import (
  26. EnhanceRecursiveCharacterTextSplitter,
  27. FixedRecursiveCharacterTextSplitter,
  28. )
  29. from core.rag.splitter.text_splitter import TextSplitter
  30. from extensions.ext_database import db
  31. from extensions.ext_redis import redis_client
  32. from extensions.ext_storage import storage
  33. from libs import helper
  34. from models.dataset import Dataset, DatasetProcessRule, DocumentSegment
  35. from models.dataset import Document as DatasetDocument
  36. from models.model import UploadFile
  37. from services.feature_service import FeatureService
  38. class IndexingRunner:
  39. def __init__(self):
  40. self.storage = storage
  41. self.model_manager = ModelManager()
  42. def run(self, dataset_documents: list[DatasetDocument]):
  43. """Run the indexing process."""
  44. for dataset_document in dataset_documents:
  45. try:
  46. # get dataset
  47. dataset = Dataset.query.filter_by(
  48. id=dataset_document.dataset_id
  49. ).first()
  50. if not dataset:
  51. raise ValueError("no dataset found")
  52. # get the process rule
  53. processing_rule = db.session.query(DatasetProcessRule). \
  54. filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
  55. first()
  56. index_type = dataset_document.doc_form
  57. index_processor = IndexProcessorFactory(index_type).init_index_processor()
  58. # extract
  59. text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
  60. # transform
  61. documents = self._transform(index_processor, dataset, text_docs, dataset_document.doc_language,
  62. processing_rule.to_dict())
  63. # save segment
  64. self._load_segments(dataset, dataset_document, documents)
  65. # load
  66. self._load(
  67. index_processor=index_processor,
  68. dataset=dataset,
  69. dataset_document=dataset_document,
  70. documents=documents
  71. )
  72. except DocumentIsPausedException:
  73. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  74. except ProviderTokenNotInitError as e:
  75. dataset_document.indexing_status = 'error'
  76. dataset_document.error = str(e.description)
  77. dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  78. db.session.commit()
  79. except ObjectDeletedError:
  80. logging.warning('Document deleted, document id: {}'.format(dataset_document.id))
  81. except Exception as e:
  82. logging.exception("consume document failed")
  83. dataset_document.indexing_status = 'error'
  84. dataset_document.error = str(e)
  85. dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  86. db.session.commit()
  87. def run_in_splitting_status(self, dataset_document: DatasetDocument):
  88. """Run the indexing process when the index_status is splitting."""
  89. try:
  90. # get dataset
  91. dataset = Dataset.query.filter_by(
  92. id=dataset_document.dataset_id
  93. ).first()
  94. if not dataset:
  95. raise ValueError("no dataset found")
  96. # get exist document_segment list and delete
  97. document_segments = DocumentSegment.query.filter_by(
  98. dataset_id=dataset.id,
  99. document_id=dataset_document.id
  100. ).all()
  101. for document_segment in document_segments:
  102. db.session.delete(document_segment)
  103. db.session.commit()
  104. # get the process rule
  105. processing_rule = db.session.query(DatasetProcessRule). \
  106. filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
  107. first()
  108. index_type = dataset_document.doc_form
  109. index_processor = IndexProcessorFactory(index_type).init_index_processor()
  110. # extract
  111. text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
  112. # transform
  113. documents = self._transform(index_processor, dataset, text_docs, dataset_document.doc_language,
  114. processing_rule.to_dict())
  115. # save segment
  116. self._load_segments(dataset, dataset_document, documents)
  117. # load
  118. self._load(
  119. index_processor=index_processor,
  120. dataset=dataset,
  121. dataset_document=dataset_document,
  122. documents=documents
  123. )
  124. except DocumentIsPausedException:
  125. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  126. except ProviderTokenNotInitError as e:
  127. dataset_document.indexing_status = 'error'
  128. dataset_document.error = str(e.description)
  129. dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  130. db.session.commit()
  131. except Exception as e:
  132. logging.exception("consume document failed")
  133. dataset_document.indexing_status = 'error'
  134. dataset_document.error = str(e)
  135. dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  136. db.session.commit()
  137. def run_in_indexing_status(self, dataset_document: DatasetDocument):
  138. """Run the indexing process when the index_status is indexing."""
  139. try:
  140. # get dataset
  141. dataset = Dataset.query.filter_by(
  142. id=dataset_document.dataset_id
  143. ).first()
  144. if not dataset:
  145. raise ValueError("no dataset found")
  146. # get exist document_segment list and delete
  147. document_segments = DocumentSegment.query.filter_by(
  148. dataset_id=dataset.id,
  149. document_id=dataset_document.id
  150. ).all()
  151. documents = []
  152. if document_segments:
  153. for document_segment in document_segments:
  154. # transform segment to node
  155. if document_segment.status != "completed":
  156. document = Document(
  157. page_content=document_segment.content,
  158. metadata={
  159. "doc_id": document_segment.index_node_id,
  160. "doc_hash": document_segment.index_node_hash,
  161. "document_id": document_segment.document_id,
  162. "dataset_id": document_segment.dataset_id,
  163. }
  164. )
  165. documents.append(document)
  166. # build index
  167. # get the process rule
  168. processing_rule = db.session.query(DatasetProcessRule). \
  169. filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
  170. first()
  171. index_type = dataset_document.doc_form
  172. index_processor = IndexProcessorFactory(index_type).init_index_processor()
  173. self._load(
  174. index_processor=index_processor,
  175. dataset=dataset,
  176. dataset_document=dataset_document,
  177. documents=documents
  178. )
  179. except DocumentIsPausedException:
  180. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  181. except ProviderTokenNotInitError as e:
  182. dataset_document.indexing_status = 'error'
  183. dataset_document.error = str(e.description)
  184. dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  185. db.session.commit()
  186. except Exception as e:
  187. logging.exception("consume document failed")
  188. dataset_document.indexing_status = 'error'
  189. dataset_document.error = str(e)
  190. dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  191. db.session.commit()
  192. def indexing_estimate(self, tenant_id: str, extract_settings: list[ExtractSetting], tmp_processing_rule: dict,
  193. doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
  194. indexing_technique: str = 'economy') -> dict:
  195. """
  196. Estimate the indexing for the document.
  197. """
  198. # check document limit
  199. features = FeatureService.get_features(tenant_id)
  200. if features.billing.enabled:
  201. count = len(extract_settings)
  202. batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
  203. if count > batch_upload_limit:
  204. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  205. embedding_model_instance = None
  206. if dataset_id:
  207. dataset = Dataset.query.filter_by(
  208. id=dataset_id
  209. ).first()
  210. if not dataset:
  211. raise ValueError('Dataset not found.')
  212. if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
  213. if dataset.embedding_model_provider:
  214. embedding_model_instance = self.model_manager.get_model_instance(
  215. tenant_id=tenant_id,
  216. provider=dataset.embedding_model_provider,
  217. model_type=ModelType.TEXT_EMBEDDING,
  218. model=dataset.embedding_model
  219. )
  220. else:
  221. embedding_model_instance = self.model_manager.get_default_model_instance(
  222. tenant_id=tenant_id,
  223. model_type=ModelType.TEXT_EMBEDDING,
  224. )
  225. else:
  226. if indexing_technique == 'high_quality':
  227. embedding_model_instance = self.model_manager.get_default_model_instance(
  228. tenant_id=tenant_id,
  229. model_type=ModelType.TEXT_EMBEDDING,
  230. )
  231. tokens = 0
  232. preview_texts = []
  233. total_segments = 0
  234. total_price = 0
  235. currency = 'USD'
  236. index_type = doc_form
  237. index_processor = IndexProcessorFactory(index_type).init_index_processor()
  238. all_text_docs = []
  239. for extract_setting in extract_settings:
  240. # extract
  241. text_docs = index_processor.extract(extract_setting, process_rule_mode=tmp_processing_rule["mode"])
  242. all_text_docs.extend(text_docs)
  243. processing_rule = DatasetProcessRule(
  244. mode=tmp_processing_rule["mode"],
  245. rules=json.dumps(tmp_processing_rule["rules"])
  246. )
  247. # get splitter
  248. splitter = self._get_splitter(processing_rule, embedding_model_instance)
  249. # split to documents
  250. documents = self._split_to_documents_for_estimate(
  251. text_docs=text_docs,
  252. splitter=splitter,
  253. processing_rule=processing_rule
  254. )
  255. total_segments += len(documents)
  256. for document in documents:
  257. if len(preview_texts) < 5:
  258. preview_texts.append(document.page_content)
  259. if indexing_technique == 'high_quality' or embedding_model_instance:
  260. tokens += embedding_model_instance.get_text_embedding_num_tokens(
  261. texts=[self.filter_string(document.page_content)]
  262. )
  263. if doc_form and doc_form == 'qa_model':
  264. model_instance = self.model_manager.get_default_model_instance(
  265. tenant_id=tenant_id,
  266. model_type=ModelType.LLM
  267. )
  268. model_type_instance = model_instance.model_type_instance
  269. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  270. if len(preview_texts) > 0:
  271. # qa model document
  272. response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
  273. doc_language)
  274. document_qa_list = self.format_split_text(response)
  275. price_info = model_type_instance.get_price(
  276. model=model_instance.model,
  277. credentials=model_instance.credentials,
  278. price_type=PriceType.INPUT,
  279. tokens=total_segments * 2000,
  280. )
  281. return {
  282. "total_segments": total_segments * 20,
  283. "tokens": total_segments * 2000,
  284. "total_price": '{:f}'.format(price_info.total_amount),
  285. "currency": price_info.currency,
  286. "qa_preview": document_qa_list,
  287. "preview": preview_texts
  288. }
  289. if embedding_model_instance:
  290. embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_instance.model_type_instance)
  291. embedding_price_info = embedding_model_type_instance.get_price(
  292. model=embedding_model_instance.model,
  293. credentials=embedding_model_instance.credentials,
  294. price_type=PriceType.INPUT,
  295. tokens=tokens
  296. )
  297. total_price = '{:f}'.format(embedding_price_info.total_amount)
  298. currency = embedding_price_info.currency
  299. return {
  300. "total_segments": total_segments,
  301. "tokens": tokens,
  302. "total_price": total_price,
  303. "currency": currency,
  304. "preview": preview_texts
  305. }
  306. def _extract(self, index_processor: BaseIndexProcessor, dataset_document: DatasetDocument, process_rule: dict) \
  307. -> list[Document]:
  308. # load file
  309. if dataset_document.data_source_type not in ["upload_file", "notion_import", "website_crawl"]:
  310. return []
  311. data_source_info = dataset_document.data_source_info_dict
  312. text_docs = []
  313. if dataset_document.data_source_type == 'upload_file':
  314. if not data_source_info or 'upload_file_id' not in data_source_info:
  315. raise ValueError("no upload file found")
  316. file_detail = db.session.query(UploadFile). \
  317. filter(UploadFile.id == data_source_info['upload_file_id']). \
  318. one_or_none()
  319. if file_detail:
  320. extract_setting = ExtractSetting(
  321. datasource_type="upload_file",
  322. upload_file=file_detail,
  323. document_model=dataset_document.doc_form
  324. )
  325. text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule['mode'])
  326. elif dataset_document.data_source_type == 'notion_import':
  327. if (not data_source_info or 'notion_workspace_id' not in data_source_info
  328. or 'notion_page_id' not in data_source_info):
  329. raise ValueError("no notion import info found")
  330. extract_setting = ExtractSetting(
  331. datasource_type="notion_import",
  332. notion_info={
  333. "notion_workspace_id": data_source_info['notion_workspace_id'],
  334. "notion_obj_id": data_source_info['notion_page_id'],
  335. "notion_page_type": data_source_info['type'],
  336. "document": dataset_document,
  337. "tenant_id": dataset_document.tenant_id
  338. },
  339. document_model=dataset_document.doc_form
  340. )
  341. text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule['mode'])
  342. elif dataset_document.data_source_type == 'website_crawl':
  343. if (not data_source_info or 'provider' not in data_source_info
  344. or 'url' not in data_source_info or 'job_id' not in data_source_info):
  345. raise ValueError("no website import info found")
  346. extract_setting = ExtractSetting(
  347. datasource_type="website_crawl",
  348. website_info={
  349. "provider": data_source_info['provider'],
  350. "job_id": data_source_info['job_id'],
  351. "tenant_id": dataset_document.tenant_id,
  352. "url": data_source_info['url'],
  353. "mode": data_source_info['mode'],
  354. "only_main_content": data_source_info['only_main_content']
  355. },
  356. document_model=dataset_document.doc_form
  357. )
  358. text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule['mode'])
  359. # update document status to splitting
  360. self._update_document_index_status(
  361. document_id=dataset_document.id,
  362. after_indexing_status="splitting",
  363. extra_update_params={
  364. DatasetDocument.word_count: sum(len(text_doc.page_content) for text_doc in text_docs),
  365. DatasetDocument.parsing_completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  366. }
  367. )
  368. # replace doc id to document model id
  369. text_docs = cast(list[Document], text_docs)
  370. for text_doc in text_docs:
  371. text_doc.metadata['document_id'] = dataset_document.id
  372. text_doc.metadata['dataset_id'] = dataset_document.dataset_id
  373. return text_docs
  374. def filter_string(self, text):
  375. text = re.sub(r'<\|', '<', text)
  376. text = re.sub(r'\|>', '>', text)
  377. text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\xEF\xBF\xBE]', '', text)
  378. # Unicode U+FFFE
  379. text = re.sub('\uFFFE', '', text)
  380. return text
  381. def _get_splitter(self, processing_rule: DatasetProcessRule,
  382. embedding_model_instance: Optional[ModelInstance]) -> TextSplitter:
  383. """
  384. Get the NodeParser object according to the processing rule.
  385. """
  386. if processing_rule.mode == "custom":
  387. # The user-defined segmentation rule
  388. rules = json.loads(processing_rule.rules)
  389. segmentation = rules["segmentation"]
  390. max_segmentation_tokens_length = int(current_app.config['INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH'])
  391. if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > max_segmentation_tokens_length:
  392. raise ValueError(f"Custom segment length should be between 50 and {max_segmentation_tokens_length}.")
  393. separator = segmentation["separator"]
  394. if separator:
  395. separator = separator.replace('\\n', '\n')
  396. if segmentation.get('chunk_overlap'):
  397. chunk_overlap = segmentation['chunk_overlap']
  398. else:
  399. chunk_overlap = 0
  400. character_splitter = FixedRecursiveCharacterTextSplitter.from_encoder(
  401. chunk_size=segmentation["max_tokens"],
  402. chunk_overlap=chunk_overlap,
  403. fixed_separator=separator,
  404. separators=["\n\n", "。", ". ", " ", ""],
  405. embedding_model_instance=embedding_model_instance
  406. )
  407. else:
  408. # Automatic segmentation
  409. character_splitter = EnhanceRecursiveCharacterTextSplitter.from_encoder(
  410. chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
  411. chunk_overlap=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['chunk_overlap'],
  412. separators=["\n\n", "。", ". ", " ", ""],
  413. embedding_model_instance=embedding_model_instance
  414. )
  415. return character_splitter
  416. def _step_split(self, text_docs: list[Document], splitter: TextSplitter,
  417. dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \
  418. -> list[Document]:
  419. """
  420. Split the text documents into documents and save them to the document segment.
  421. """
  422. documents = self._split_to_documents(
  423. text_docs=text_docs,
  424. splitter=splitter,
  425. processing_rule=processing_rule,
  426. tenant_id=dataset.tenant_id,
  427. document_form=dataset_document.doc_form,
  428. document_language=dataset_document.doc_language
  429. )
  430. # save node to document segment
  431. doc_store = DatasetDocumentStore(
  432. dataset=dataset,
  433. user_id=dataset_document.created_by,
  434. document_id=dataset_document.id
  435. )
  436. # add document segments
  437. doc_store.add_documents(documents)
  438. # update document status to indexing
  439. cur_time = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  440. self._update_document_index_status(
  441. document_id=dataset_document.id,
  442. after_indexing_status="indexing",
  443. extra_update_params={
  444. DatasetDocument.cleaning_completed_at: cur_time,
  445. DatasetDocument.splitting_completed_at: cur_time,
  446. }
  447. )
  448. # update segment status to indexing
  449. self._update_segments_by_document(
  450. dataset_document_id=dataset_document.id,
  451. update_params={
  452. DocumentSegment.status: "indexing",
  453. DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  454. }
  455. )
  456. return documents
  457. def _split_to_documents(self, text_docs: list[Document], splitter: TextSplitter,
  458. processing_rule: DatasetProcessRule, tenant_id: str,
  459. document_form: str, document_language: str) -> list[Document]:
  460. """
  461. Split the text documents into nodes.
  462. """
  463. all_documents = []
  464. all_qa_documents = []
  465. for text_doc in text_docs:
  466. # document clean
  467. document_text = self._document_clean(text_doc.page_content, processing_rule)
  468. text_doc.page_content = document_text
  469. # parse document to nodes
  470. documents = splitter.split_documents([text_doc])
  471. split_documents = []
  472. for document_node in documents:
  473. if document_node.page_content.strip():
  474. doc_id = str(uuid.uuid4())
  475. hash = helper.generate_text_hash(document_node.page_content)
  476. document_node.metadata['doc_id'] = doc_id
  477. document_node.metadata['doc_hash'] = hash
  478. # delete Spliter character
  479. page_content = document_node.page_content
  480. if page_content.startswith(".") or page_content.startswith("。"):
  481. page_content = page_content[1:]
  482. else:
  483. page_content = page_content
  484. document_node.page_content = page_content
  485. if document_node.page_content:
  486. split_documents.append(document_node)
  487. all_documents.extend(split_documents)
  488. # processing qa document
  489. if document_form == 'qa_model':
  490. for i in range(0, len(all_documents), 10):
  491. threads = []
  492. sub_documents = all_documents[i:i + 10]
  493. for doc in sub_documents:
  494. document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={
  495. 'flask_app': current_app._get_current_object(),
  496. 'tenant_id': tenant_id, 'document_node': doc, 'all_qa_documents': all_qa_documents,
  497. 'document_language': document_language})
  498. threads.append(document_format_thread)
  499. document_format_thread.start()
  500. for thread in threads:
  501. thread.join()
  502. return all_qa_documents
  503. return all_documents
  504. def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
  505. format_documents = []
  506. if document_node.page_content is None or not document_node.page_content.strip():
  507. return
  508. with flask_app.app_context():
  509. try:
  510. # qa model document
  511. response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language)
  512. document_qa_list = self.format_split_text(response)
  513. qa_documents = []
  514. for result in document_qa_list:
  515. qa_document = Document(page_content=result['question'], metadata=document_node.metadata.model_copy())
  516. doc_id = str(uuid.uuid4())
  517. hash = helper.generate_text_hash(result['question'])
  518. qa_document.metadata['answer'] = result['answer']
  519. qa_document.metadata['doc_id'] = doc_id
  520. qa_document.metadata['doc_hash'] = hash
  521. qa_documents.append(qa_document)
  522. format_documents.extend(qa_documents)
  523. except Exception as e:
  524. logging.exception(e)
  525. all_qa_documents.extend(format_documents)
  526. def _split_to_documents_for_estimate(self, text_docs: list[Document], splitter: TextSplitter,
  527. processing_rule: DatasetProcessRule) -> list[Document]:
  528. """
  529. Split the text documents into nodes.
  530. """
  531. all_documents = []
  532. for text_doc in text_docs:
  533. # document clean
  534. document_text = self._document_clean(text_doc.page_content, processing_rule)
  535. text_doc.page_content = document_text
  536. # parse document to nodes
  537. documents = splitter.split_documents([text_doc])
  538. split_documents = []
  539. for document in documents:
  540. if document.page_content is None or not document.page_content.strip():
  541. continue
  542. doc_id = str(uuid.uuid4())
  543. hash = helper.generate_text_hash(document.page_content)
  544. document.metadata['doc_id'] = doc_id
  545. document.metadata['doc_hash'] = hash
  546. split_documents.append(document)
  547. all_documents.extend(split_documents)
  548. return all_documents
  549. def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
  550. """
  551. Clean the document text according to the processing rules.
  552. """
  553. if processing_rule.mode == "automatic":
  554. rules = DatasetProcessRule.AUTOMATIC_RULES
  555. else:
  556. rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
  557. if 'pre_processing_rules' in rules:
  558. pre_processing_rules = rules["pre_processing_rules"]
  559. for pre_processing_rule in pre_processing_rules:
  560. if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
  561. # Remove extra spaces
  562. pattern = r'\n{3,}'
  563. text = re.sub(pattern, '\n\n', text)
  564. pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
  565. text = re.sub(pattern, ' ', text)
  566. elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
  567. # Remove email
  568. pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
  569. text = re.sub(pattern, '', text)
  570. # Remove URL
  571. pattern = r'https?://[^\s]+'
  572. text = re.sub(pattern, '', text)
  573. return text
  574. def format_split_text(self, text):
  575. regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q\d+:|$)"
  576. matches = re.findall(regex, text, re.UNICODE)
  577. return [
  578. {
  579. "question": q,
  580. "answer": re.sub(r"\n\s*", "\n", a.strip())
  581. }
  582. for q, a in matches if q and a
  583. ]
  584. def _load(self, index_processor: BaseIndexProcessor, dataset: Dataset,
  585. dataset_document: DatasetDocument, documents: list[Document]) -> None:
  586. """
  587. insert index and update document/segment status to completed
  588. """
  589. embedding_model_instance = None
  590. if dataset.indexing_technique == 'high_quality':
  591. embedding_model_instance = self.model_manager.get_model_instance(
  592. tenant_id=dataset.tenant_id,
  593. provider=dataset.embedding_model_provider,
  594. model_type=ModelType.TEXT_EMBEDDING,
  595. model=dataset.embedding_model
  596. )
  597. # chunk nodes by chunk size
  598. indexing_start_at = time.perf_counter()
  599. tokens = 0
  600. chunk_size = 10
  601. # create keyword index
  602. create_keyword_thread = threading.Thread(target=self._process_keyword_index,
  603. args=(current_app._get_current_object(),
  604. dataset.id, dataset_document.id, documents))
  605. create_keyword_thread.start()
  606. if dataset.indexing_technique == 'high_quality':
  607. with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
  608. futures = []
  609. for i in range(0, len(documents), chunk_size):
  610. chunk_documents = documents[i:i + chunk_size]
  611. futures.append(executor.submit(self._process_chunk, current_app._get_current_object(), index_processor,
  612. chunk_documents, dataset,
  613. dataset_document, embedding_model_instance))
  614. for future in futures:
  615. tokens += future.result()
  616. create_keyword_thread.join()
  617. indexing_end_at = time.perf_counter()
  618. # update document status to completed
  619. self._update_document_index_status(
  620. document_id=dataset_document.id,
  621. after_indexing_status="completed",
  622. extra_update_params={
  623. DatasetDocument.tokens: tokens,
  624. DatasetDocument.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  625. DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
  626. }
  627. )
  628. def _process_keyword_index(self, flask_app, dataset_id, document_id, documents):
  629. with flask_app.app_context():
  630. dataset = Dataset.query.filter_by(id=dataset_id).first()
  631. if not dataset:
  632. raise ValueError("no dataset found")
  633. keyword = Keyword(dataset)
  634. keyword.create(documents)
  635. if dataset.indexing_technique != 'high_quality':
  636. document_ids = [document.metadata['doc_id'] for document in documents]
  637. db.session.query(DocumentSegment).filter(
  638. DocumentSegment.document_id == document_id,
  639. DocumentSegment.index_node_id.in_(document_ids),
  640. DocumentSegment.status == "indexing"
  641. ).update({
  642. DocumentSegment.status: "completed",
  643. DocumentSegment.enabled: True,
  644. DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  645. })
  646. db.session.commit()
  647. def _process_chunk(self, flask_app, index_processor, chunk_documents, dataset, dataset_document,
  648. embedding_model_instance):
  649. with flask_app.app_context():
  650. # check document is paused
  651. self._check_document_paused_status(dataset_document.id)
  652. tokens = 0
  653. if embedding_model_instance:
  654. tokens += sum(
  655. embedding_model_instance.get_text_embedding_num_tokens(
  656. [document.page_content]
  657. )
  658. for document in chunk_documents
  659. )
  660. # load index
  661. index_processor.load(dataset, chunk_documents, with_keywords=False)
  662. document_ids = [document.metadata['doc_id'] for document in chunk_documents]
  663. db.session.query(DocumentSegment).filter(
  664. DocumentSegment.document_id == dataset_document.id,
  665. DocumentSegment.index_node_id.in_(document_ids),
  666. DocumentSegment.status == "indexing"
  667. ).update({
  668. DocumentSegment.status: "completed",
  669. DocumentSegment.enabled: True,
  670. DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  671. })
  672. db.session.commit()
  673. return tokens
  674. def _check_document_paused_status(self, document_id: str):
  675. indexing_cache_key = 'document_{}_is_paused'.format(document_id)
  676. result = redis_client.get(indexing_cache_key)
  677. if result:
  678. raise DocumentIsPausedException()
  679. def _update_document_index_status(self, document_id: str, after_indexing_status: str,
  680. extra_update_params: Optional[dict] = None) -> None:
  681. """
  682. Update the document indexing status.
  683. """
  684. count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
  685. if count > 0:
  686. raise DocumentIsPausedException()
  687. document = DatasetDocument.query.filter_by(id=document_id).first()
  688. if not document:
  689. raise DocumentIsDeletedPausedException()
  690. update_params = {
  691. DatasetDocument.indexing_status: after_indexing_status
  692. }
  693. if extra_update_params:
  694. update_params.update(extra_update_params)
  695. DatasetDocument.query.filter_by(id=document_id).update(update_params)
  696. db.session.commit()
  697. def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None:
  698. """
  699. Update the document segment by document id.
  700. """
  701. DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
  702. db.session.commit()
  703. def batch_add_segments(self, segments: list[DocumentSegment], dataset: Dataset):
  704. """
  705. Batch add segments index processing
  706. """
  707. documents = []
  708. for segment in segments:
  709. document = Document(
  710. page_content=segment.content,
  711. metadata={
  712. "doc_id": segment.index_node_id,
  713. "doc_hash": segment.index_node_hash,
  714. "document_id": segment.document_id,
  715. "dataset_id": segment.dataset_id,
  716. }
  717. )
  718. documents.append(document)
  719. # save vector index
  720. index_type = dataset.doc_form
  721. index_processor = IndexProcessorFactory(index_type).init_index_processor()
  722. index_processor.load(dataset, documents)
  723. def _transform(self, index_processor: BaseIndexProcessor, dataset: Dataset,
  724. text_docs: list[Document], doc_language: str, process_rule: dict) -> list[Document]:
  725. # get embedding model instance
  726. embedding_model_instance = None
  727. if dataset.indexing_technique == 'high_quality':
  728. if dataset.embedding_model_provider:
  729. embedding_model_instance = self.model_manager.get_model_instance(
  730. tenant_id=dataset.tenant_id,
  731. provider=dataset.embedding_model_provider,
  732. model_type=ModelType.TEXT_EMBEDDING,
  733. model=dataset.embedding_model
  734. )
  735. else:
  736. embedding_model_instance = self.model_manager.get_default_model_instance(
  737. tenant_id=dataset.tenant_id,
  738. model_type=ModelType.TEXT_EMBEDDING,
  739. )
  740. documents = index_processor.transform(text_docs, embedding_model_instance=embedding_model_instance,
  741. process_rule=process_rule, tenant_id=dataset.tenant_id,
  742. doc_language=doc_language)
  743. return documents
  744. def _load_segments(self, dataset, dataset_document, documents):
  745. # save node to document segment
  746. doc_store = DatasetDocumentStore(
  747. dataset=dataset,
  748. user_id=dataset_document.created_by,
  749. document_id=dataset_document.id
  750. )
  751. # add document segments
  752. doc_store.add_documents(documents)
  753. # update document status to indexing
  754. cur_time = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  755. self._update_document_index_status(
  756. document_id=dataset_document.id,
  757. after_indexing_status="indexing",
  758. extra_update_params={
  759. DatasetDocument.cleaning_completed_at: cur_time,
  760. DatasetDocument.splitting_completed_at: cur_time,
  761. }
  762. )
  763. # update segment status to indexing
  764. self._update_segments_by_document(
  765. dataset_document_id=dataset_document.id,
  766. update_params={
  767. DocumentSegment.status: "indexing",
  768. DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  769. }
  770. )
  771. pass
  772. class DocumentIsPausedException(Exception):
  773. pass
  774. class DocumentIsDeletedPausedException(Exception):
  775. pass