hit_testing_service.py 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114
  1. import logging
  2. import time
  3. from core.rag.datasource.retrieval_service import RetrievalService
  4. from core.rag.models.document import Document
  5. from core.rag.retrieval.retrieval_methods import RetrievalMethod
  6. from extensions.ext_database import db
  7. from models.account import Account
  8. from models.dataset import Dataset, DatasetQuery, DocumentSegment
  9. default_retrieval_model = {
  10. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  11. "reranking_enable": False,
  12. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  13. "top_k": 2,
  14. "score_threshold_enabled": False,
  15. }
  16. class HitTestingService:
  17. @classmethod
  18. def retrieve(cls, dataset: Dataset, query: str, account: Account, retrieval_model: dict, limit: int = 10) -> dict:
  19. if dataset.available_document_count == 0 or dataset.available_segment_count == 0:
  20. return {
  21. "query": {
  22. "content": query,
  23. "tsne_position": {"x": 0, "y": 0},
  24. },
  25. "records": [],
  26. }
  27. start = time.perf_counter()
  28. # get retrieval model , if the model is not setting , using default
  29. if not retrieval_model:
  30. retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
  31. all_documents = RetrievalService.retrieve(
  32. retrieval_method=retrieval_model.get("search_method", "semantic_search"),
  33. dataset_id=dataset.id,
  34. query=cls.escape_query_for_search(query),
  35. top_k=retrieval_model.get("top_k", 2),
  36. score_threshold=retrieval_model.get("score_threshold", 0.0)
  37. if retrieval_model["score_threshold_enabled"]
  38. else None,
  39. reranking_model=retrieval_model.get("reranking_model", None)
  40. if retrieval_model["reranking_enable"]
  41. else None,
  42. reranking_mode=retrieval_model.get("reranking_mode")
  43. if retrieval_model.get("reranking_mode")
  44. else "reranking_model",
  45. weights=retrieval_model.get("weights", None),
  46. )
  47. end = time.perf_counter()
  48. logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")
  49. dataset_query = DatasetQuery(
  50. dataset_id=dataset.id, content=query, source="hit_testing", created_by_role="account", created_by=account.id
  51. )
  52. db.session.add(dataset_query)
  53. db.session.commit()
  54. return cls.compact_retrieve_response(dataset, query, all_documents)
  55. @classmethod
  56. def compact_retrieve_response(cls, dataset: Dataset, query: str, documents: list[Document]):
  57. i = 0
  58. records = []
  59. for document in documents:
  60. index_node_id = document.metadata["doc_id"]
  61. segment = (
  62. db.session.query(DocumentSegment)
  63. .filter(
  64. DocumentSegment.dataset_id == dataset.id,
  65. DocumentSegment.enabled == True,
  66. DocumentSegment.status == "completed",
  67. DocumentSegment.index_node_id == index_node_id,
  68. )
  69. .first()
  70. )
  71. if not segment:
  72. i += 1
  73. continue
  74. record = {
  75. "segment": segment,
  76. "score": document.metadata.get("score", None),
  77. }
  78. records.append(record)
  79. i += 1
  80. return {
  81. "query": {
  82. "content": query,
  83. },
  84. "records": records,
  85. }
  86. @classmethod
  87. def hit_testing_args_check(cls, args):
  88. query = args["query"]
  89. if not query or len(query) > 250:
  90. raise ValueError("Query is required and cannot exceed 250 characters")
  91. @staticmethod
  92. def escape_query_for_search(query: str) -> str:
  93. return query.replace('"', '\\"')