dataset_service.py 73 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667
  1. import datetime
  2. import json
  3. import logging
  4. import random
  5. import time
  6. import uuid
  7. from typing import Optional
  8. from flask_login import current_user
  9. from sqlalchemy import func
  10. from configs import dify_config
  11. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  12. from core.model_manager import ModelManager
  13. from core.model_runtime.entities.model_entities import ModelType
  14. from core.rag.datasource.keyword.keyword_factory import Keyword
  15. from core.rag.models.document import Document as RAGDocument
  16. from core.rag.retrieval.retrieval_methods import RetrievalMethod
  17. from events.dataset_event import dataset_was_deleted
  18. from events.document_event import document_was_deleted
  19. from extensions.ext_database import db
  20. from extensions.ext_redis import redis_client
  21. from libs import helper
  22. from models.account import Account, TenantAccountRole
  23. from models.dataset import (
  24. AppDatasetJoin,
  25. Dataset,
  26. DatasetCollectionBinding,
  27. DatasetPermission,
  28. DatasetPermissionEnum,
  29. DatasetProcessRule,
  30. DatasetQuery,
  31. Document,
  32. DocumentSegment,
  33. )
  34. from models.model import UploadFile
  35. from models.source import DataSourceOauthBinding
  36. from services.errors.account import NoPermissionError
  37. from services.errors.dataset import DatasetNameDuplicateError
  38. from services.errors.document import DocumentIndexingError
  39. from services.errors.file import FileNotExistsError
  40. from services.feature_service import FeatureModel, FeatureService
  41. from services.tag_service import TagService
  42. from services.vector_service import VectorService
  43. from tasks.clean_notion_document_task import clean_notion_document_task
  44. from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
  45. from tasks.delete_segment_from_index_task import delete_segment_from_index_task
  46. from tasks.disable_segment_from_index_task import disable_segment_from_index_task
  47. from tasks.document_indexing_task import document_indexing_task
  48. from tasks.document_indexing_update_task import document_indexing_update_task
  49. from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task
  50. from tasks.recover_document_indexing_task import recover_document_indexing_task
  51. from tasks.retry_document_indexing_task import retry_document_indexing_task
  52. from tasks.sync_website_document_indexing_task import sync_website_document_indexing_task
  53. class DatasetService:
  54. @staticmethod
  55. def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None, search=None, tag_ids=None):
  56. query = Dataset.query.filter(Dataset.provider == provider, Dataset.tenant_id == tenant_id).order_by(
  57. Dataset.created_at.desc()
  58. )
  59. if user:
  60. # get permitted dataset ids
  61. dataset_permission = DatasetPermission.query.filter_by(account_id=user.id, tenant_id=tenant_id).all()
  62. permitted_dataset_ids = {dp.dataset_id for dp in dataset_permission} if dataset_permission else None
  63. if user.current_role == TenantAccountRole.DATASET_OPERATOR:
  64. # only show datasets that the user has permission to access
  65. if permitted_dataset_ids:
  66. query = query.filter(Dataset.id.in_(permitted_dataset_ids))
  67. else:
  68. return [], 0
  69. else:
  70. # show all datasets that the user has permission to access
  71. if permitted_dataset_ids:
  72. query = query.filter(
  73. db.or_(
  74. Dataset.permission == DatasetPermissionEnum.ALL_TEAM,
  75. db.and_(Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id),
  76. db.and_(
  77. Dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM,
  78. Dataset.id.in_(permitted_dataset_ids),
  79. ),
  80. )
  81. )
  82. else:
  83. query = query.filter(
  84. db.or_(
  85. Dataset.permission == DatasetPermissionEnum.ALL_TEAM,
  86. db.and_(Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id),
  87. )
  88. )
  89. else:
  90. # if no user, only show datasets that are shared with all team members
  91. query = query.filter(Dataset.permission == DatasetPermissionEnum.ALL_TEAM)
  92. if search:
  93. query = query.filter(Dataset.name.ilike(f"%{search}%"))
  94. if tag_ids:
  95. target_ids = TagService.get_target_ids_by_tag_ids("knowledge", tenant_id, tag_ids)
  96. if target_ids:
  97. query = query.filter(Dataset.id.in_(target_ids))
  98. else:
  99. return [], 0
  100. datasets = query.paginate(page=page, per_page=per_page, max_per_page=100, error_out=False)
  101. return datasets.items, datasets.total
  102. @staticmethod
  103. def get_process_rules(dataset_id):
  104. # get the latest process rule
  105. dataset_process_rule = (
  106. db.session.query(DatasetProcessRule)
  107. .filter(DatasetProcessRule.dataset_id == dataset_id)
  108. .order_by(DatasetProcessRule.created_at.desc())
  109. .limit(1)
  110. .one_or_none()
  111. )
  112. if dataset_process_rule:
  113. mode = dataset_process_rule.mode
  114. rules = dataset_process_rule.rules_dict
  115. else:
  116. mode = DocumentService.DEFAULT_RULES["mode"]
  117. rules = DocumentService.DEFAULT_RULES["rules"]
  118. return {"mode": mode, "rules": rules}
  119. @staticmethod
  120. def get_datasets_by_ids(ids, tenant_id):
  121. datasets = Dataset.query.filter(Dataset.id.in_(ids), Dataset.tenant_id == tenant_id).paginate(
  122. page=1, per_page=len(ids), max_per_page=len(ids), error_out=False
  123. )
  124. return datasets.items, datasets.total
  125. @staticmethod
  126. def create_empty_dataset(
  127. tenant_id: str, name: str, indexing_technique: Optional[str], account: Account, permission: Optional[str] = None
  128. ):
  129. # check if dataset name already exists
  130. if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
  131. raise DatasetNameDuplicateError(f"Dataset with name {name} already exists.")
  132. embedding_model = None
  133. if indexing_technique == "high_quality":
  134. model_manager = ModelManager()
  135. embedding_model = model_manager.get_default_model_instance(
  136. tenant_id=tenant_id, model_type=ModelType.TEXT_EMBEDDING
  137. )
  138. dataset = Dataset(name=name, indexing_technique=indexing_technique)
  139. # dataset = Dataset(name=name, provider=provider, config=config)
  140. dataset.created_by = account.id
  141. dataset.updated_by = account.id
  142. dataset.tenant_id = tenant_id
  143. dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
  144. dataset.embedding_model = embedding_model.model if embedding_model else None
  145. dataset.permission = permission if permission else DatasetPermissionEnum.ONLY_ME
  146. db.session.add(dataset)
  147. db.session.commit()
  148. return dataset
  149. @staticmethod
  150. def get_dataset(dataset_id):
  151. return Dataset.query.filter_by(id=dataset_id).first()
  152. @staticmethod
  153. def check_dataset_model_setting(dataset):
  154. if dataset.indexing_technique == "high_quality":
  155. try:
  156. model_manager = ModelManager()
  157. model_manager.get_model_instance(
  158. tenant_id=dataset.tenant_id,
  159. provider=dataset.embedding_model_provider,
  160. model_type=ModelType.TEXT_EMBEDDING,
  161. model=dataset.embedding_model,
  162. )
  163. except LLMBadRequestError:
  164. raise ValueError(
  165. "No Embedding Model available. Please configure a valid provider "
  166. "in the Settings -> Model Provider."
  167. )
  168. except ProviderTokenNotInitError as ex:
  169. raise ValueError(f"The dataset in unavailable, due to: " f"{ex.description}")
  170. @staticmethod
  171. def check_embedding_model_setting(tenant_id: str, embedding_model_provider: str, embedding_model: str):
  172. try:
  173. model_manager = ModelManager()
  174. model_manager.get_model_instance(
  175. tenant_id=tenant_id,
  176. provider=embedding_model_provider,
  177. model_type=ModelType.TEXT_EMBEDDING,
  178. model=embedding_model,
  179. )
  180. except LLMBadRequestError:
  181. raise ValueError(
  182. "No Embedding Model available. Please configure a valid provider " "in the Settings -> Model Provider."
  183. )
  184. except ProviderTokenNotInitError as ex:
  185. raise ValueError(f"The dataset in unavailable, due to: " f"{ex.description}")
  186. @staticmethod
  187. def update_dataset(dataset_id, data, user):
  188. data.pop("partial_member_list", None)
  189. filtered_data = {k: v for k, v in data.items() if v is not None or k == "description"}
  190. dataset = DatasetService.get_dataset(dataset_id)
  191. DatasetService.check_dataset_permission(dataset, user)
  192. action = None
  193. if dataset.indexing_technique != data["indexing_technique"]:
  194. # if update indexing_technique
  195. if data["indexing_technique"] == "economy":
  196. action = "remove"
  197. filtered_data["embedding_model"] = None
  198. filtered_data["embedding_model_provider"] = None
  199. filtered_data["collection_binding_id"] = None
  200. elif data["indexing_technique"] == "high_quality":
  201. action = "add"
  202. # get embedding model setting
  203. try:
  204. model_manager = ModelManager()
  205. embedding_model = model_manager.get_model_instance(
  206. tenant_id=current_user.current_tenant_id,
  207. provider=data["embedding_model_provider"],
  208. model_type=ModelType.TEXT_EMBEDDING,
  209. model=data["embedding_model"],
  210. )
  211. filtered_data["embedding_model"] = embedding_model.model
  212. filtered_data["embedding_model_provider"] = embedding_model.provider
  213. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  214. embedding_model.provider, embedding_model.model
  215. )
  216. filtered_data["collection_binding_id"] = dataset_collection_binding.id
  217. except LLMBadRequestError:
  218. raise ValueError(
  219. "No Embedding Model available. Please configure a valid provider "
  220. "in the Settings -> Model Provider."
  221. )
  222. except ProviderTokenNotInitError as ex:
  223. raise ValueError(ex.description)
  224. else:
  225. if (
  226. data["embedding_model_provider"] != dataset.embedding_model_provider
  227. or data["embedding_model"] != dataset.embedding_model
  228. ):
  229. action = "update"
  230. try:
  231. model_manager = ModelManager()
  232. embedding_model = model_manager.get_model_instance(
  233. tenant_id=current_user.current_tenant_id,
  234. provider=data["embedding_model_provider"],
  235. model_type=ModelType.TEXT_EMBEDDING,
  236. model=data["embedding_model"],
  237. )
  238. filtered_data["embedding_model"] = embedding_model.model
  239. filtered_data["embedding_model_provider"] = embedding_model.provider
  240. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  241. embedding_model.provider, embedding_model.model
  242. )
  243. filtered_data["collection_binding_id"] = dataset_collection_binding.id
  244. except LLMBadRequestError:
  245. raise ValueError(
  246. "No Embedding Model available. Please configure a valid provider "
  247. "in the Settings -> Model Provider."
  248. )
  249. except ProviderTokenNotInitError as ex:
  250. raise ValueError(ex.description)
  251. filtered_data["updated_by"] = user.id
  252. filtered_data["updated_at"] = datetime.datetime.now()
  253. # update Retrieval model
  254. filtered_data["retrieval_model"] = data["retrieval_model"]
  255. dataset.query.filter_by(id=dataset_id).update(filtered_data)
  256. db.session.commit()
  257. if action:
  258. deal_dataset_vector_index_task.delay(dataset_id, action)
  259. return dataset
  260. @staticmethod
  261. def delete_dataset(dataset_id, user):
  262. dataset = DatasetService.get_dataset(dataset_id)
  263. if dataset is None:
  264. return False
  265. DatasetService.check_dataset_permission(dataset, user)
  266. dataset_was_deleted.send(dataset)
  267. db.session.delete(dataset)
  268. db.session.commit()
  269. return True
  270. @staticmethod
  271. def dataset_use_check(dataset_id) -> bool:
  272. count = AppDatasetJoin.query.filter_by(dataset_id=dataset_id).count()
  273. if count > 0:
  274. return True
  275. return False
  276. @staticmethod
  277. def check_dataset_permission(dataset, user):
  278. if dataset.tenant_id != user.current_tenant_id:
  279. logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
  280. raise NoPermissionError("You do not have permission to access this dataset.")
  281. if dataset.permission == DatasetPermissionEnum.ONLY_ME and dataset.created_by != user.id:
  282. logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
  283. raise NoPermissionError("You do not have permission to access this dataset.")
  284. if dataset.permission == "partial_members":
  285. user_permission = DatasetPermission.query.filter_by(dataset_id=dataset.id, account_id=user.id).first()
  286. if not user_permission and dataset.tenant_id != user.current_tenant_id and dataset.created_by != user.id:
  287. logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
  288. raise NoPermissionError("You do not have permission to access this dataset.")
  289. @staticmethod
  290. def check_dataset_operator_permission(user: Account = None, dataset: Dataset = None):
  291. if dataset.permission == DatasetPermissionEnum.ONLY_ME:
  292. if dataset.created_by != user.id:
  293. raise NoPermissionError("You do not have permission to access this dataset.")
  294. elif dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM:
  295. if not any(
  296. dp.dataset_id == dataset.id for dp in DatasetPermission.query.filter_by(account_id=user.id).all()
  297. ):
  298. raise NoPermissionError("You do not have permission to access this dataset.")
  299. @staticmethod
  300. def get_dataset_queries(dataset_id: str, page: int, per_page: int):
  301. dataset_queries = (
  302. DatasetQuery.query.filter_by(dataset_id=dataset_id)
  303. .order_by(db.desc(DatasetQuery.created_at))
  304. .paginate(page=page, per_page=per_page, max_per_page=100, error_out=False)
  305. )
  306. return dataset_queries.items, dataset_queries.total
  307. @staticmethod
  308. def get_related_apps(dataset_id: str):
  309. return (
  310. AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id)
  311. .order_by(db.desc(AppDatasetJoin.created_at))
  312. .all()
  313. )
  314. class DocumentService:
  315. DEFAULT_RULES = {
  316. "mode": "custom",
  317. "rules": {
  318. "pre_processing_rules": [
  319. {"id": "remove_extra_spaces", "enabled": True},
  320. {"id": "remove_urls_emails", "enabled": False},
  321. ],
  322. "segmentation": {"delimiter": "\n", "max_tokens": 500, "chunk_overlap": 50},
  323. },
  324. }
  325. DOCUMENT_METADATA_SCHEMA = {
  326. "book": {
  327. "title": str,
  328. "language": str,
  329. "author": str,
  330. "publisher": str,
  331. "publication_date": str,
  332. "isbn": str,
  333. "category": str,
  334. },
  335. "web_page": {
  336. "title": str,
  337. "url": str,
  338. "language": str,
  339. "publish_date": str,
  340. "author/publisher": str,
  341. "topic/keywords": str,
  342. "description": str,
  343. },
  344. "paper": {
  345. "title": str,
  346. "language": str,
  347. "author": str,
  348. "publish_date": str,
  349. "journal/conference_name": str,
  350. "volume/issue/page_numbers": str,
  351. "doi": str,
  352. "topic/keywords": str,
  353. "abstract": str,
  354. },
  355. "social_media_post": {
  356. "platform": str,
  357. "author/username": str,
  358. "publish_date": str,
  359. "post_url": str,
  360. "topic/tags": str,
  361. },
  362. "wikipedia_entry": {
  363. "title": str,
  364. "language": str,
  365. "web_page_url": str,
  366. "last_edit_date": str,
  367. "editor/contributor": str,
  368. "summary/introduction": str,
  369. },
  370. "personal_document": {
  371. "title": str,
  372. "author": str,
  373. "creation_date": str,
  374. "last_modified_date": str,
  375. "document_type": str,
  376. "tags/category": str,
  377. },
  378. "business_document": {
  379. "title": str,
  380. "author": str,
  381. "creation_date": str,
  382. "last_modified_date": str,
  383. "document_type": str,
  384. "department/team": str,
  385. },
  386. "im_chat_log": {
  387. "chat_platform": str,
  388. "chat_participants/group_name": str,
  389. "start_date": str,
  390. "end_date": str,
  391. "summary": str,
  392. },
  393. "synced_from_notion": {
  394. "title": str,
  395. "language": str,
  396. "author/creator": str,
  397. "creation_date": str,
  398. "last_modified_date": str,
  399. "notion_page_link": str,
  400. "category/tags": str,
  401. "description": str,
  402. },
  403. "synced_from_github": {
  404. "repository_name": str,
  405. "repository_description": str,
  406. "repository_owner/organization": str,
  407. "code_filename": str,
  408. "code_file_path": str,
  409. "programming_language": str,
  410. "github_link": str,
  411. "open_source_license": str,
  412. "commit_date": str,
  413. "commit_author": str,
  414. },
  415. "others": dict,
  416. }
  417. @staticmethod
  418. def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
  419. document = (
  420. db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
  421. )
  422. return document
  423. @staticmethod
  424. def get_document_by_id(document_id: str) -> Optional[Document]:
  425. document = db.session.query(Document).filter(Document.id == document_id).first()
  426. return document
  427. @staticmethod
  428. def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
  429. documents = db.session.query(Document).filter(Document.dataset_id == dataset_id, Document.enabled == True).all()
  430. return documents
  431. @staticmethod
  432. def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:
  433. documents = (
  434. db.session.query(Document)
  435. .filter(Document.dataset_id == dataset_id, Document.indexing_status.in_(["error", "paused"]))
  436. .all()
  437. )
  438. return documents
  439. @staticmethod
  440. def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
  441. documents = (
  442. db.session.query(Document)
  443. .filter(
  444. Document.batch == batch,
  445. Document.dataset_id == dataset_id,
  446. Document.tenant_id == current_user.current_tenant_id,
  447. )
  448. .all()
  449. )
  450. return documents
  451. @staticmethod
  452. def get_document_file_detail(file_id: str):
  453. file_detail = db.session.query(UploadFile).filter(UploadFile.id == file_id).one_or_none()
  454. return file_detail
  455. @staticmethod
  456. def check_archived(document):
  457. if document.archived:
  458. return True
  459. else:
  460. return False
  461. @staticmethod
  462. def delete_document(document):
  463. # trigger document_was_deleted signal
  464. file_id = None
  465. if document.data_source_type == "upload_file":
  466. if document.data_source_info:
  467. data_source_info = document.data_source_info_dict
  468. if data_source_info and "upload_file_id" in data_source_info:
  469. file_id = data_source_info["upload_file_id"]
  470. document_was_deleted.send(
  471. document.id, dataset_id=document.dataset_id, doc_form=document.doc_form, file_id=file_id
  472. )
  473. db.session.delete(document)
  474. db.session.commit()
  475. @staticmethod
  476. def rename_document(dataset_id: str, document_id: str, name: str) -> Document:
  477. dataset = DatasetService.get_dataset(dataset_id)
  478. if not dataset:
  479. raise ValueError("Dataset not found.")
  480. document = DocumentService.get_document(dataset_id, document_id)
  481. if not document:
  482. raise ValueError("Document not found.")
  483. if document.tenant_id != current_user.current_tenant_id:
  484. raise ValueError("No permission.")
  485. document.name = name
  486. db.session.add(document)
  487. db.session.commit()
  488. return document
  489. @staticmethod
  490. def pause_document(document):
  491. if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
  492. raise DocumentIndexingError()
  493. # update document to be paused
  494. document.is_paused = True
  495. document.paused_by = current_user.id
  496. document.paused_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  497. db.session.add(document)
  498. db.session.commit()
  499. # set document paused flag
  500. indexing_cache_key = "document_{}_is_paused".format(document.id)
  501. redis_client.setnx(indexing_cache_key, "True")
  502. @staticmethod
  503. def recover_document(document):
  504. if not document.is_paused:
  505. raise DocumentIndexingError()
  506. # update document to be recover
  507. document.is_paused = False
  508. document.paused_by = None
  509. document.paused_at = None
  510. db.session.add(document)
  511. db.session.commit()
  512. # delete paused flag
  513. indexing_cache_key = "document_{}_is_paused".format(document.id)
  514. redis_client.delete(indexing_cache_key)
  515. # trigger async task
  516. recover_document_indexing_task.delay(document.dataset_id, document.id)
  517. @staticmethod
  518. def retry_document(dataset_id: str, documents: list[Document]):
  519. for document in documents:
  520. # add retry flag
  521. retry_indexing_cache_key = "document_{}_is_retried".format(document.id)
  522. cache_result = redis_client.get(retry_indexing_cache_key)
  523. if cache_result is not None:
  524. raise ValueError("Document is being retried, please try again later")
  525. # retry document indexing
  526. document.indexing_status = "waiting"
  527. db.session.add(document)
  528. db.session.commit()
  529. redis_client.setex(retry_indexing_cache_key, 600, 1)
  530. # trigger async task
  531. document_ids = [document.id for document in documents]
  532. retry_document_indexing_task.delay(dataset_id, document_ids)
  533. @staticmethod
  534. def sync_website_document(dataset_id: str, document: Document):
  535. # add sync flag
  536. sync_indexing_cache_key = "document_{}_is_sync".format(document.id)
  537. cache_result = redis_client.get(sync_indexing_cache_key)
  538. if cache_result is not None:
  539. raise ValueError("Document is being synced, please try again later")
  540. # sync document indexing
  541. document.indexing_status = "waiting"
  542. data_source_info = document.data_source_info_dict
  543. data_source_info["mode"] = "scrape"
  544. document.data_source_info = json.dumps(data_source_info, ensure_ascii=False)
  545. db.session.add(document)
  546. db.session.commit()
  547. redis_client.setex(sync_indexing_cache_key, 600, 1)
  548. sync_website_document_indexing_task.delay(dataset_id, document.id)
  549. @staticmethod
  550. def get_documents_position(dataset_id):
  551. document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
  552. if document:
  553. return document.position + 1
  554. else:
  555. return 1
  556. @staticmethod
  557. def save_document_with_dataset_id(
  558. dataset: Dataset,
  559. document_data: dict,
  560. account: Account,
  561. dataset_process_rule: Optional[DatasetProcessRule] = None,
  562. created_from: str = "web",
  563. ):
  564. # check document limit
  565. features = FeatureService.get_features(current_user.current_tenant_id)
  566. if features.billing.enabled:
  567. if "original_document_id" not in document_data or not document_data["original_document_id"]:
  568. count = 0
  569. if document_data["data_source"]["type"] == "upload_file":
  570. upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"]
  571. count = len(upload_file_list)
  572. elif document_data["data_source"]["type"] == "notion_import":
  573. notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"]
  574. for notion_info in notion_info_list:
  575. count = count + len(notion_info["pages"])
  576. elif document_data["data_source"]["type"] == "website_crawl":
  577. website_info = document_data["data_source"]["info_list"]["website_info_list"]
  578. count = len(website_info["urls"])
  579. batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
  580. if count > batch_upload_limit:
  581. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  582. DocumentService.check_documents_upload_quota(count, features)
  583. # if dataset is empty, update dataset data_source_type
  584. if not dataset.data_source_type:
  585. dataset.data_source_type = document_data["data_source"]["type"]
  586. if not dataset.indexing_technique:
  587. if (
  588. "indexing_technique" not in document_data
  589. or document_data["indexing_technique"] not in Dataset.INDEXING_TECHNIQUE_LIST
  590. ):
  591. raise ValueError("Indexing technique is required")
  592. dataset.indexing_technique = document_data["indexing_technique"]
  593. if document_data["indexing_technique"] == "high_quality":
  594. model_manager = ModelManager()
  595. embedding_model = model_manager.get_default_model_instance(
  596. tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING
  597. )
  598. dataset.embedding_model = embedding_model.model
  599. dataset.embedding_model_provider = embedding_model.provider
  600. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  601. embedding_model.provider, embedding_model.model
  602. )
  603. dataset.collection_binding_id = dataset_collection_binding.id
  604. if not dataset.retrieval_model:
  605. default_retrieval_model = {
  606. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  607. "reranking_enable": False,
  608. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  609. "top_k": 2,
  610. "score_threshold_enabled": False,
  611. }
  612. dataset.retrieval_model = (
  613. document_data.get("retrieval_model")
  614. if document_data.get("retrieval_model")
  615. else default_retrieval_model
  616. )
  617. documents = []
  618. batch = time.strftime("%Y%m%d%H%M%S") + str(random.randint(100000, 999999))
  619. if document_data.get("original_document_id"):
  620. document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
  621. documents.append(document)
  622. else:
  623. # save process rule
  624. if not dataset_process_rule:
  625. process_rule = document_data["process_rule"]
  626. if process_rule["mode"] == "custom":
  627. dataset_process_rule = DatasetProcessRule(
  628. dataset_id=dataset.id,
  629. mode=process_rule["mode"],
  630. rules=json.dumps(process_rule["rules"]),
  631. created_by=account.id,
  632. )
  633. elif process_rule["mode"] == "automatic":
  634. dataset_process_rule = DatasetProcessRule(
  635. dataset_id=dataset.id,
  636. mode=process_rule["mode"],
  637. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  638. created_by=account.id,
  639. )
  640. db.session.add(dataset_process_rule)
  641. db.session.commit()
  642. position = DocumentService.get_documents_position(dataset.id)
  643. document_ids = []
  644. duplicate_document_ids = []
  645. if document_data["data_source"]["type"] == "upload_file":
  646. upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"]
  647. for file_id in upload_file_list:
  648. file = (
  649. db.session.query(UploadFile)
  650. .filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)
  651. .first()
  652. )
  653. # raise error if file not found
  654. if not file:
  655. raise FileNotExistsError()
  656. file_name = file.name
  657. data_source_info = {
  658. "upload_file_id": file_id,
  659. }
  660. # check duplicate
  661. if document_data.get("duplicate", False):
  662. document = Document.query.filter_by(
  663. dataset_id=dataset.id,
  664. tenant_id=current_user.current_tenant_id,
  665. data_source_type="upload_file",
  666. enabled=True,
  667. name=file_name,
  668. ).first()
  669. if document:
  670. document.dataset_process_rule_id = dataset_process_rule.id
  671. document.updated_at = datetime.datetime.utcnow()
  672. document.created_from = created_from
  673. document.doc_form = document_data["doc_form"]
  674. document.doc_language = document_data["doc_language"]
  675. document.data_source_info = json.dumps(data_source_info)
  676. document.batch = batch
  677. document.indexing_status = "waiting"
  678. db.session.add(document)
  679. documents.append(document)
  680. duplicate_document_ids.append(document.id)
  681. continue
  682. document = DocumentService.build_document(
  683. dataset,
  684. dataset_process_rule.id,
  685. document_data["data_source"]["type"],
  686. document_data["doc_form"],
  687. document_data["doc_language"],
  688. data_source_info,
  689. created_from,
  690. position,
  691. account,
  692. file_name,
  693. batch,
  694. )
  695. db.session.add(document)
  696. db.session.flush()
  697. document_ids.append(document.id)
  698. documents.append(document)
  699. position += 1
  700. elif document_data["data_source"]["type"] == "notion_import":
  701. notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"]
  702. exist_page_ids = []
  703. exist_document = {}
  704. documents = Document.query.filter_by(
  705. dataset_id=dataset.id,
  706. tenant_id=current_user.current_tenant_id,
  707. data_source_type="notion_import",
  708. enabled=True,
  709. ).all()
  710. if documents:
  711. for document in documents:
  712. data_source_info = json.loads(document.data_source_info)
  713. exist_page_ids.append(data_source_info["notion_page_id"])
  714. exist_document[data_source_info["notion_page_id"]] = document.id
  715. for notion_info in notion_info_list:
  716. workspace_id = notion_info["workspace_id"]
  717. data_source_binding = DataSourceOauthBinding.query.filter(
  718. db.and_(
  719. DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
  720. DataSourceOauthBinding.provider == "notion",
  721. DataSourceOauthBinding.disabled == False,
  722. DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',
  723. )
  724. ).first()
  725. if not data_source_binding:
  726. raise ValueError("Data source binding not found.")
  727. for page in notion_info["pages"]:
  728. if page["page_id"] not in exist_page_ids:
  729. data_source_info = {
  730. "notion_workspace_id": workspace_id,
  731. "notion_page_id": page["page_id"],
  732. "notion_page_icon": page["page_icon"],
  733. "type": page["type"],
  734. }
  735. document = DocumentService.build_document(
  736. dataset,
  737. dataset_process_rule.id,
  738. document_data["data_source"]["type"],
  739. document_data["doc_form"],
  740. document_data["doc_language"],
  741. data_source_info,
  742. created_from,
  743. position,
  744. account,
  745. page["page_name"],
  746. batch,
  747. )
  748. db.session.add(document)
  749. db.session.flush()
  750. document_ids.append(document.id)
  751. documents.append(document)
  752. position += 1
  753. else:
  754. exist_document.pop(page["page_id"])
  755. # delete not selected documents
  756. if len(exist_document) > 0:
  757. clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
  758. elif document_data["data_source"]["type"] == "website_crawl":
  759. website_info = document_data["data_source"]["info_list"]["website_info_list"]
  760. urls = website_info["urls"]
  761. for url in urls:
  762. data_source_info = {
  763. "url": url,
  764. "provider": website_info["provider"],
  765. "job_id": website_info["job_id"],
  766. "only_main_content": website_info.get("only_main_content", False),
  767. "mode": "crawl",
  768. }
  769. if len(url) > 255:
  770. document_name = url[:200] + "..."
  771. else:
  772. document_name = url
  773. document = DocumentService.build_document(
  774. dataset,
  775. dataset_process_rule.id,
  776. document_data["data_source"]["type"],
  777. document_data["doc_form"],
  778. document_data["doc_language"],
  779. data_source_info,
  780. created_from,
  781. position,
  782. account,
  783. document_name,
  784. batch,
  785. )
  786. db.session.add(document)
  787. db.session.flush()
  788. document_ids.append(document.id)
  789. documents.append(document)
  790. position += 1
  791. db.session.commit()
  792. # trigger async task
  793. if document_ids:
  794. document_indexing_task.delay(dataset.id, document_ids)
  795. if duplicate_document_ids:
  796. duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)
  797. return documents, batch
  798. @staticmethod
  799. def check_documents_upload_quota(count: int, features: FeatureModel):
  800. can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
  801. if count > can_upload_size:
  802. raise ValueError(
  803. f"You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded."
  804. )
  805. @staticmethod
  806. def build_document(
  807. dataset: Dataset,
  808. process_rule_id: str,
  809. data_source_type: str,
  810. document_form: str,
  811. document_language: str,
  812. data_source_info: dict,
  813. created_from: str,
  814. position: int,
  815. account: Account,
  816. name: str,
  817. batch: str,
  818. ):
  819. document = Document(
  820. tenant_id=dataset.tenant_id,
  821. dataset_id=dataset.id,
  822. position=position,
  823. data_source_type=data_source_type,
  824. data_source_info=json.dumps(data_source_info),
  825. dataset_process_rule_id=process_rule_id,
  826. batch=batch,
  827. name=name,
  828. created_from=created_from,
  829. created_by=account.id,
  830. doc_form=document_form,
  831. doc_language=document_language,
  832. )
  833. return document
  834. @staticmethod
  835. def get_tenant_documents_count():
  836. documents_count = Document.query.filter(
  837. Document.completed_at.isnot(None),
  838. Document.enabled == True,
  839. Document.archived == False,
  840. Document.tenant_id == current_user.current_tenant_id,
  841. ).count()
  842. return documents_count
  843. @staticmethod
  844. def update_document_with_dataset_id(
  845. dataset: Dataset,
  846. document_data: dict,
  847. account: Account,
  848. dataset_process_rule: Optional[DatasetProcessRule] = None,
  849. created_from: str = "web",
  850. ):
  851. DatasetService.check_dataset_model_setting(dataset)
  852. document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
  853. if document.display_status != "available":
  854. raise ValueError("Document is not available")
  855. # update document name
  856. if document_data.get("name"):
  857. document.name = document_data["name"]
  858. # save process rule
  859. if document_data.get("process_rule"):
  860. process_rule = document_data["process_rule"]
  861. if process_rule["mode"] == "custom":
  862. dataset_process_rule = DatasetProcessRule(
  863. dataset_id=dataset.id,
  864. mode=process_rule["mode"],
  865. rules=json.dumps(process_rule["rules"]),
  866. created_by=account.id,
  867. )
  868. elif process_rule["mode"] == "automatic":
  869. dataset_process_rule = DatasetProcessRule(
  870. dataset_id=dataset.id,
  871. mode=process_rule["mode"],
  872. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  873. created_by=account.id,
  874. )
  875. db.session.add(dataset_process_rule)
  876. db.session.commit()
  877. document.dataset_process_rule_id = dataset_process_rule.id
  878. # update document data source
  879. if document_data.get("data_source"):
  880. file_name = ""
  881. data_source_info = {}
  882. if document_data["data_source"]["type"] == "upload_file":
  883. upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"]
  884. for file_id in upload_file_list:
  885. file = (
  886. db.session.query(UploadFile)
  887. .filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)
  888. .first()
  889. )
  890. # raise error if file not found
  891. if not file:
  892. raise FileNotExistsError()
  893. file_name = file.name
  894. data_source_info = {
  895. "upload_file_id": file_id,
  896. }
  897. elif document_data["data_source"]["type"] == "notion_import":
  898. notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"]
  899. for notion_info in notion_info_list:
  900. workspace_id = notion_info["workspace_id"]
  901. data_source_binding = DataSourceOauthBinding.query.filter(
  902. db.and_(
  903. DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
  904. DataSourceOauthBinding.provider == "notion",
  905. DataSourceOauthBinding.disabled == False,
  906. DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',
  907. )
  908. ).first()
  909. if not data_source_binding:
  910. raise ValueError("Data source binding not found.")
  911. for page in notion_info["pages"]:
  912. data_source_info = {
  913. "notion_workspace_id": workspace_id,
  914. "notion_page_id": page["page_id"],
  915. "notion_page_icon": page["page_icon"],
  916. "type": page["type"],
  917. }
  918. elif document_data["data_source"]["type"] == "website_crawl":
  919. website_info = document_data["data_source"]["info_list"]["website_info_list"]
  920. urls = website_info["urls"]
  921. for url in urls:
  922. data_source_info = {
  923. "url": url,
  924. "provider": website_info["provider"],
  925. "job_id": website_info["job_id"],
  926. "only_main_content": website_info.get("only_main_content", False),
  927. "mode": "crawl",
  928. }
  929. document.data_source_type = document_data["data_source"]["type"]
  930. document.data_source_info = json.dumps(data_source_info)
  931. document.name = file_name
  932. # update document to be waiting
  933. document.indexing_status = "waiting"
  934. document.completed_at = None
  935. document.processing_started_at = None
  936. document.parsing_completed_at = None
  937. document.cleaning_completed_at = None
  938. document.splitting_completed_at = None
  939. document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  940. document.created_from = created_from
  941. document.doc_form = document_data["doc_form"]
  942. db.session.add(document)
  943. db.session.commit()
  944. # update document segment
  945. update_params = {DocumentSegment.status: "re_segment"}
  946. DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
  947. db.session.commit()
  948. # trigger async task
  949. document_indexing_update_task.delay(document.dataset_id, document.id)
  950. return document
  951. @staticmethod
  952. def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
  953. features = FeatureService.get_features(current_user.current_tenant_id)
  954. if features.billing.enabled:
  955. count = 0
  956. if document_data["data_source"]["type"] == "upload_file":
  957. upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"]
  958. count = len(upload_file_list)
  959. elif document_data["data_source"]["type"] == "notion_import":
  960. notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"]
  961. for notion_info in notion_info_list:
  962. count = count + len(notion_info["pages"])
  963. elif document_data["data_source"]["type"] == "website_crawl":
  964. website_info = document_data["data_source"]["info_list"]["website_info_list"]
  965. count = len(website_info["urls"])
  966. batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
  967. if count > batch_upload_limit:
  968. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  969. DocumentService.check_documents_upload_quota(count, features)
  970. dataset_collection_binding_id = None
  971. retrieval_model = None
  972. if document_data["indexing_technique"] == "high_quality":
  973. model_manager = ModelManager()
  974. embedding_model = model_manager.get_default_model_instance(
  975. tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING
  976. )
  977. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  978. embedding_model.provider, embedding_model.model
  979. )
  980. dataset_collection_binding_id = dataset_collection_binding.id
  981. if document_data.get("retrieval_model"):
  982. retrieval_model = document_data["retrieval_model"]
  983. else:
  984. default_retrieval_model = {
  985. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  986. "reranking_enable": False,
  987. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  988. "top_k": 2,
  989. "score_threshold_enabled": False,
  990. }
  991. retrieval_model = default_retrieval_model
  992. # save dataset
  993. dataset = Dataset(
  994. tenant_id=tenant_id,
  995. name="",
  996. data_source_type=document_data["data_source"]["type"],
  997. indexing_technique=document_data.get("indexing_technique", "high_quality"),
  998. created_by=account.id,
  999. embedding_model=document_data.get("embedding_model"),
  1000. embedding_model_provider=document_data.get("embedding_model_provider"),
  1001. collection_binding_id=dataset_collection_binding_id,
  1002. retrieval_model=retrieval_model,
  1003. )
  1004. db.session.add(dataset)
  1005. db.session.flush()
  1006. documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
  1007. cut_length = 18
  1008. cut_name = documents[0].name[:cut_length]
  1009. dataset.name = cut_name + "..."
  1010. dataset.description = "useful for when you want to answer queries about the " + documents[0].name
  1011. db.session.commit()
  1012. return dataset, documents, batch
  1013. @classmethod
  1014. def document_create_args_validate(cls, args: dict):
  1015. if "original_document_id" not in args or not args["original_document_id"]:
  1016. DocumentService.data_source_args_validate(args)
  1017. DocumentService.process_rule_args_validate(args)
  1018. else:
  1019. if ("data_source" not in args and not args["data_source"]) and (
  1020. "process_rule" not in args and not args["process_rule"]
  1021. ):
  1022. raise ValueError("Data source or Process rule is required")
  1023. else:
  1024. if args.get("data_source"):
  1025. DocumentService.data_source_args_validate(args)
  1026. if args.get("process_rule"):
  1027. DocumentService.process_rule_args_validate(args)
  1028. @classmethod
  1029. def data_source_args_validate(cls, args: dict):
  1030. if "data_source" not in args or not args["data_source"]:
  1031. raise ValueError("Data source is required")
  1032. if not isinstance(args["data_source"], dict):
  1033. raise ValueError("Data source is invalid")
  1034. if "type" not in args["data_source"] or not args["data_source"]["type"]:
  1035. raise ValueError("Data source type is required")
  1036. if args["data_source"]["type"] not in Document.DATA_SOURCES:
  1037. raise ValueError("Data source type is invalid")
  1038. if "info_list" not in args["data_source"] or not args["data_source"]["info_list"]:
  1039. raise ValueError("Data source info is required")
  1040. if args["data_source"]["type"] == "upload_file":
  1041. if (
  1042. "file_info_list" not in args["data_source"]["info_list"]
  1043. or not args["data_source"]["info_list"]["file_info_list"]
  1044. ):
  1045. raise ValueError("File source info is required")
  1046. if args["data_source"]["type"] == "notion_import":
  1047. if (
  1048. "notion_info_list" not in args["data_source"]["info_list"]
  1049. or not args["data_source"]["info_list"]["notion_info_list"]
  1050. ):
  1051. raise ValueError("Notion source info is required")
  1052. if args["data_source"]["type"] == "website_crawl":
  1053. if (
  1054. "website_info_list" not in args["data_source"]["info_list"]
  1055. or not args["data_source"]["info_list"]["website_info_list"]
  1056. ):
  1057. raise ValueError("Website source info is required")
  1058. @classmethod
  1059. def process_rule_args_validate(cls, args: dict):
  1060. if "process_rule" not in args or not args["process_rule"]:
  1061. raise ValueError("Process rule is required")
  1062. if not isinstance(args["process_rule"], dict):
  1063. raise ValueError("Process rule is invalid")
  1064. if "mode" not in args["process_rule"] or not args["process_rule"]["mode"]:
  1065. raise ValueError("Process rule mode is required")
  1066. if args["process_rule"]["mode"] not in DatasetProcessRule.MODES:
  1067. raise ValueError("Process rule mode is invalid")
  1068. if args["process_rule"]["mode"] == "automatic":
  1069. args["process_rule"]["rules"] = {}
  1070. else:
  1071. if "rules" not in args["process_rule"] or not args["process_rule"]["rules"]:
  1072. raise ValueError("Process rule rules is required")
  1073. if not isinstance(args["process_rule"]["rules"], dict):
  1074. raise ValueError("Process rule rules is invalid")
  1075. if (
  1076. "pre_processing_rules" not in args["process_rule"]["rules"]
  1077. or args["process_rule"]["rules"]["pre_processing_rules"] is None
  1078. ):
  1079. raise ValueError("Process rule pre_processing_rules is required")
  1080. if not isinstance(args["process_rule"]["rules"]["pre_processing_rules"], list):
  1081. raise ValueError("Process rule pre_processing_rules is invalid")
  1082. unique_pre_processing_rule_dicts = {}
  1083. for pre_processing_rule in args["process_rule"]["rules"]["pre_processing_rules"]:
  1084. if "id" not in pre_processing_rule or not pre_processing_rule["id"]:
  1085. raise ValueError("Process rule pre_processing_rules id is required")
  1086. if pre_processing_rule["id"] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  1087. raise ValueError("Process rule pre_processing_rules id is invalid")
  1088. if "enabled" not in pre_processing_rule or pre_processing_rule["enabled"] is None:
  1089. raise ValueError("Process rule pre_processing_rules enabled is required")
  1090. if not isinstance(pre_processing_rule["enabled"], bool):
  1091. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  1092. unique_pre_processing_rule_dicts[pre_processing_rule["id"]] = pre_processing_rule
  1093. args["process_rule"]["rules"]["pre_processing_rules"] = list(unique_pre_processing_rule_dicts.values())
  1094. if (
  1095. "segmentation" not in args["process_rule"]["rules"]
  1096. or args["process_rule"]["rules"]["segmentation"] is None
  1097. ):
  1098. raise ValueError("Process rule segmentation is required")
  1099. if not isinstance(args["process_rule"]["rules"]["segmentation"], dict):
  1100. raise ValueError("Process rule segmentation is invalid")
  1101. if (
  1102. "separator" not in args["process_rule"]["rules"]["segmentation"]
  1103. or not args["process_rule"]["rules"]["segmentation"]["separator"]
  1104. ):
  1105. raise ValueError("Process rule segmentation separator is required")
  1106. if not isinstance(args["process_rule"]["rules"]["segmentation"]["separator"], str):
  1107. raise ValueError("Process rule segmentation separator is invalid")
  1108. if (
  1109. "max_tokens" not in args["process_rule"]["rules"]["segmentation"]
  1110. or not args["process_rule"]["rules"]["segmentation"]["max_tokens"]
  1111. ):
  1112. raise ValueError("Process rule segmentation max_tokens is required")
  1113. if not isinstance(args["process_rule"]["rules"]["segmentation"]["max_tokens"], int):
  1114. raise ValueError("Process rule segmentation max_tokens is invalid")
  1115. @classmethod
  1116. def estimate_args_validate(cls, args: dict):
  1117. if "info_list" not in args or not args["info_list"]:
  1118. raise ValueError("Data source info is required")
  1119. if not isinstance(args["info_list"], dict):
  1120. raise ValueError("Data info is invalid")
  1121. if "process_rule" not in args or not args["process_rule"]:
  1122. raise ValueError("Process rule is required")
  1123. if not isinstance(args["process_rule"], dict):
  1124. raise ValueError("Process rule is invalid")
  1125. if "mode" not in args["process_rule"] or not args["process_rule"]["mode"]:
  1126. raise ValueError("Process rule mode is required")
  1127. if args["process_rule"]["mode"] not in DatasetProcessRule.MODES:
  1128. raise ValueError("Process rule mode is invalid")
  1129. if args["process_rule"]["mode"] == "automatic":
  1130. args["process_rule"]["rules"] = {}
  1131. else:
  1132. if "rules" not in args["process_rule"] or not args["process_rule"]["rules"]:
  1133. raise ValueError("Process rule rules is required")
  1134. if not isinstance(args["process_rule"]["rules"], dict):
  1135. raise ValueError("Process rule rules is invalid")
  1136. if (
  1137. "pre_processing_rules" not in args["process_rule"]["rules"]
  1138. or args["process_rule"]["rules"]["pre_processing_rules"] is None
  1139. ):
  1140. raise ValueError("Process rule pre_processing_rules is required")
  1141. if not isinstance(args["process_rule"]["rules"]["pre_processing_rules"], list):
  1142. raise ValueError("Process rule pre_processing_rules is invalid")
  1143. unique_pre_processing_rule_dicts = {}
  1144. for pre_processing_rule in args["process_rule"]["rules"]["pre_processing_rules"]:
  1145. if "id" not in pre_processing_rule or not pre_processing_rule["id"]:
  1146. raise ValueError("Process rule pre_processing_rules id is required")
  1147. if pre_processing_rule["id"] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  1148. raise ValueError("Process rule pre_processing_rules id is invalid")
  1149. if "enabled" not in pre_processing_rule or pre_processing_rule["enabled"] is None:
  1150. raise ValueError("Process rule pre_processing_rules enabled is required")
  1151. if not isinstance(pre_processing_rule["enabled"], bool):
  1152. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  1153. unique_pre_processing_rule_dicts[pre_processing_rule["id"]] = pre_processing_rule
  1154. args["process_rule"]["rules"]["pre_processing_rules"] = list(unique_pre_processing_rule_dicts.values())
  1155. if (
  1156. "segmentation" not in args["process_rule"]["rules"]
  1157. or args["process_rule"]["rules"]["segmentation"] is None
  1158. ):
  1159. raise ValueError("Process rule segmentation is required")
  1160. if not isinstance(args["process_rule"]["rules"]["segmentation"], dict):
  1161. raise ValueError("Process rule segmentation is invalid")
  1162. if (
  1163. "separator" not in args["process_rule"]["rules"]["segmentation"]
  1164. or not args["process_rule"]["rules"]["segmentation"]["separator"]
  1165. ):
  1166. raise ValueError("Process rule segmentation separator is required")
  1167. if not isinstance(args["process_rule"]["rules"]["segmentation"]["separator"], str):
  1168. raise ValueError("Process rule segmentation separator is invalid")
  1169. if (
  1170. "max_tokens" not in args["process_rule"]["rules"]["segmentation"]
  1171. or not args["process_rule"]["rules"]["segmentation"]["max_tokens"]
  1172. ):
  1173. raise ValueError("Process rule segmentation max_tokens is required")
  1174. if not isinstance(args["process_rule"]["rules"]["segmentation"]["max_tokens"], int):
  1175. raise ValueError("Process rule segmentation max_tokens is invalid")
  1176. class SegmentService:
  1177. @classmethod
  1178. def segment_create_args_validate(cls, args: dict, document: Document):
  1179. if document.doc_form == "qa_model":
  1180. if "answer" not in args or not args["answer"]:
  1181. raise ValueError("Answer is required")
  1182. if not args["answer"].strip():
  1183. raise ValueError("Answer is empty")
  1184. if "content" not in args or not args["content"] or not args["content"].strip():
  1185. raise ValueError("Content is empty")
  1186. @classmethod
  1187. def create_segment(cls, args: dict, document: Document, dataset: Dataset):
  1188. content = args["content"]
  1189. doc_id = str(uuid.uuid4())
  1190. segment_hash = helper.generate_text_hash(content)
  1191. tokens = 0
  1192. if dataset.indexing_technique == "high_quality":
  1193. model_manager = ModelManager()
  1194. embedding_model = model_manager.get_model_instance(
  1195. tenant_id=current_user.current_tenant_id,
  1196. provider=dataset.embedding_model_provider,
  1197. model_type=ModelType.TEXT_EMBEDDING,
  1198. model=dataset.embedding_model,
  1199. )
  1200. # calc embedding use tokens
  1201. tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
  1202. lock_name = "add_segment_lock_document_id_{}".format(document.id)
  1203. with redis_client.lock(lock_name, timeout=600):
  1204. max_position = (
  1205. db.session.query(func.max(DocumentSegment.position))
  1206. .filter(DocumentSegment.document_id == document.id)
  1207. .scalar()
  1208. )
  1209. segment_document = DocumentSegment(
  1210. tenant_id=current_user.current_tenant_id,
  1211. dataset_id=document.dataset_id,
  1212. document_id=document.id,
  1213. index_node_id=doc_id,
  1214. index_node_hash=segment_hash,
  1215. position=max_position + 1 if max_position else 1,
  1216. content=content,
  1217. word_count=len(content),
  1218. tokens=tokens,
  1219. status="completed",
  1220. indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1221. completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1222. created_by=current_user.id,
  1223. )
  1224. if document.doc_form == "qa_model":
  1225. segment_document.answer = args["answer"]
  1226. db.session.add(segment_document)
  1227. db.session.commit()
  1228. # save vector index
  1229. try:
  1230. VectorService.create_segments_vector([args["keywords"]], [segment_document], dataset)
  1231. except Exception as e:
  1232. logging.exception("create segment index failed")
  1233. segment_document.enabled = False
  1234. segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1235. segment_document.status = "error"
  1236. segment_document.error = str(e)
  1237. db.session.commit()
  1238. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
  1239. return segment
  1240. @classmethod
  1241. def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
  1242. lock_name = "multi_add_segment_lock_document_id_{}".format(document.id)
  1243. with redis_client.lock(lock_name, timeout=600):
  1244. embedding_model = None
  1245. if dataset.indexing_technique == "high_quality":
  1246. model_manager = ModelManager()
  1247. embedding_model = model_manager.get_model_instance(
  1248. tenant_id=current_user.current_tenant_id,
  1249. provider=dataset.embedding_model_provider,
  1250. model_type=ModelType.TEXT_EMBEDDING,
  1251. model=dataset.embedding_model,
  1252. )
  1253. max_position = (
  1254. db.session.query(func.max(DocumentSegment.position))
  1255. .filter(DocumentSegment.document_id == document.id)
  1256. .scalar()
  1257. )
  1258. pre_segment_data_list = []
  1259. segment_data_list = []
  1260. keywords_list = []
  1261. for segment_item in segments:
  1262. content = segment_item["content"]
  1263. doc_id = str(uuid.uuid4())
  1264. segment_hash = helper.generate_text_hash(content)
  1265. tokens = 0
  1266. if dataset.indexing_technique == "high_quality" and embedding_model:
  1267. # calc embedding use tokens
  1268. tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
  1269. segment_document = DocumentSegment(
  1270. tenant_id=current_user.current_tenant_id,
  1271. dataset_id=document.dataset_id,
  1272. document_id=document.id,
  1273. index_node_id=doc_id,
  1274. index_node_hash=segment_hash,
  1275. position=max_position + 1 if max_position else 1,
  1276. content=content,
  1277. word_count=len(content),
  1278. tokens=tokens,
  1279. status="completed",
  1280. indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1281. completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1282. created_by=current_user.id,
  1283. )
  1284. if document.doc_form == "qa_model":
  1285. segment_document.answer = segment_item["answer"]
  1286. db.session.add(segment_document)
  1287. segment_data_list.append(segment_document)
  1288. pre_segment_data_list.append(segment_document)
  1289. if "keywords" in segment_item:
  1290. keywords_list.append(segment_item["keywords"])
  1291. else:
  1292. keywords_list.append(None)
  1293. try:
  1294. # save vector index
  1295. VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)
  1296. except Exception as e:
  1297. logging.exception("create segment index failed")
  1298. for segment_document in segment_data_list:
  1299. segment_document.enabled = False
  1300. segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1301. segment_document.status = "error"
  1302. segment_document.error = str(e)
  1303. db.session.commit()
  1304. return segment_data_list
  1305. @classmethod
  1306. def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
  1307. indexing_cache_key = "segment_{}_indexing".format(segment.id)
  1308. cache_result = redis_client.get(indexing_cache_key)
  1309. if cache_result is not None:
  1310. raise ValueError("Segment is indexing, please try again later")
  1311. if "enabled" in args and args["enabled"] is not None:
  1312. action = args["enabled"]
  1313. if segment.enabled != action:
  1314. if not action:
  1315. segment.enabled = action
  1316. segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1317. segment.disabled_by = current_user.id
  1318. db.session.add(segment)
  1319. db.session.commit()
  1320. # Set cache to prevent indexing the same segment multiple times
  1321. redis_client.setex(indexing_cache_key, 600, 1)
  1322. disable_segment_from_index_task.delay(segment.id)
  1323. return segment
  1324. if not segment.enabled:
  1325. if "enabled" in args and args["enabled"] is not None:
  1326. if not args["enabled"]:
  1327. raise ValueError("Can't update disabled segment")
  1328. else:
  1329. raise ValueError("Can't update disabled segment")
  1330. try:
  1331. content = args["content"]
  1332. if segment.content == content:
  1333. if document.doc_form == "qa_model":
  1334. segment.answer = args["answer"]
  1335. if args.get("keywords"):
  1336. segment.keywords = args["keywords"]
  1337. segment.enabled = True
  1338. segment.disabled_at = None
  1339. segment.disabled_by = None
  1340. db.session.add(segment)
  1341. db.session.commit()
  1342. # update segment index task
  1343. if "keywords" in args:
  1344. keyword = Keyword(dataset)
  1345. keyword.delete_by_ids([segment.index_node_id])
  1346. document = RAGDocument(
  1347. page_content=segment.content,
  1348. metadata={
  1349. "doc_id": segment.index_node_id,
  1350. "doc_hash": segment.index_node_hash,
  1351. "document_id": segment.document_id,
  1352. "dataset_id": segment.dataset_id,
  1353. },
  1354. )
  1355. keyword.add_texts([document], keywords_list=[args["keywords"]])
  1356. else:
  1357. segment_hash = helper.generate_text_hash(content)
  1358. tokens = 0
  1359. if dataset.indexing_technique == "high_quality":
  1360. model_manager = ModelManager()
  1361. embedding_model = model_manager.get_model_instance(
  1362. tenant_id=current_user.current_tenant_id,
  1363. provider=dataset.embedding_model_provider,
  1364. model_type=ModelType.TEXT_EMBEDDING,
  1365. model=dataset.embedding_model,
  1366. )
  1367. # calc embedding use tokens
  1368. tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
  1369. segment.content = content
  1370. segment.index_node_hash = segment_hash
  1371. segment.word_count = len(content)
  1372. segment.tokens = tokens
  1373. segment.status = "completed"
  1374. segment.indexing_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1375. segment.completed_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1376. segment.updated_by = current_user.id
  1377. segment.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1378. segment.enabled = True
  1379. segment.disabled_at = None
  1380. segment.disabled_by = None
  1381. if document.doc_form == "qa_model":
  1382. segment.answer = args["answer"]
  1383. db.session.add(segment)
  1384. db.session.commit()
  1385. # update segment vector index
  1386. VectorService.update_segment_vector(args["keywords"], segment, dataset)
  1387. except Exception as e:
  1388. logging.exception("update segment index failed")
  1389. segment.enabled = False
  1390. segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1391. segment.status = "error"
  1392. segment.error = str(e)
  1393. db.session.commit()
  1394. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
  1395. return segment
  1396. @classmethod
  1397. def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
  1398. indexing_cache_key = "segment_{}_delete_indexing".format(segment.id)
  1399. cache_result = redis_client.get(indexing_cache_key)
  1400. if cache_result is not None:
  1401. raise ValueError("Segment is deleting.")
  1402. # enabled segment need to delete index
  1403. if segment.enabled:
  1404. # send delete segment index task
  1405. redis_client.setex(indexing_cache_key, 600, 1)
  1406. delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
  1407. db.session.delete(segment)
  1408. db.session.commit()
  1409. class DatasetCollectionBindingService:
  1410. @classmethod
  1411. def get_dataset_collection_binding(
  1412. cls, provider_name: str, model_name: str, collection_type: str = "dataset"
  1413. ) -> DatasetCollectionBinding:
  1414. dataset_collection_binding = (
  1415. db.session.query(DatasetCollectionBinding)
  1416. .filter(
  1417. DatasetCollectionBinding.provider_name == provider_name,
  1418. DatasetCollectionBinding.model_name == model_name,
  1419. DatasetCollectionBinding.type == collection_type,
  1420. )
  1421. .order_by(DatasetCollectionBinding.created_at)
  1422. .first()
  1423. )
  1424. if not dataset_collection_binding:
  1425. dataset_collection_binding = DatasetCollectionBinding(
  1426. provider_name=provider_name,
  1427. model_name=model_name,
  1428. collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
  1429. type=collection_type,
  1430. )
  1431. db.session.add(dataset_collection_binding)
  1432. db.session.commit()
  1433. return dataset_collection_binding
  1434. @classmethod
  1435. def get_dataset_collection_binding_by_id_and_type(
  1436. cls, collection_binding_id: str, collection_type: str = "dataset"
  1437. ) -> DatasetCollectionBinding:
  1438. dataset_collection_binding = (
  1439. db.session.query(DatasetCollectionBinding)
  1440. .filter(
  1441. DatasetCollectionBinding.id == collection_binding_id, DatasetCollectionBinding.type == collection_type
  1442. )
  1443. .order_by(DatasetCollectionBinding.created_at)
  1444. .first()
  1445. )
  1446. return dataset_collection_binding
  1447. class DatasetPermissionService:
  1448. @classmethod
  1449. def get_dataset_partial_member_list(cls, dataset_id):
  1450. user_list_query = (
  1451. db.session.query(
  1452. DatasetPermission.account_id,
  1453. )
  1454. .filter(DatasetPermission.dataset_id == dataset_id)
  1455. .all()
  1456. )
  1457. user_list = []
  1458. for user in user_list_query:
  1459. user_list.append(user.account_id)
  1460. return user_list
  1461. @classmethod
  1462. def update_partial_member_list(cls, tenant_id, dataset_id, user_list):
  1463. try:
  1464. db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
  1465. permissions = []
  1466. for user in user_list:
  1467. permission = DatasetPermission(
  1468. tenant_id=tenant_id,
  1469. dataset_id=dataset_id,
  1470. account_id=user["user_id"],
  1471. )
  1472. permissions.append(permission)
  1473. db.session.add_all(permissions)
  1474. db.session.commit()
  1475. except Exception as e:
  1476. db.session.rollback()
  1477. raise e
  1478. @classmethod
  1479. def check_permission(cls, user, dataset, requested_permission, requested_partial_member_list):
  1480. if not user.is_dataset_editor:
  1481. raise NoPermissionError("User does not have permission to edit this dataset.")
  1482. if user.is_dataset_operator and dataset.permission != requested_permission:
  1483. raise NoPermissionError("Dataset operators cannot change the dataset permissions.")
  1484. if user.is_dataset_operator and requested_permission == "partial_members":
  1485. if not requested_partial_member_list:
  1486. raise ValueError("Partial member list is required when setting to partial members.")
  1487. local_member_list = cls.get_dataset_partial_member_list(dataset.id)
  1488. request_member_list = [user["user_id"] for user in requested_partial_member_list]
  1489. if set(local_member_list) != set(request_member_list):
  1490. raise ValueError("Dataset operators cannot change the dataset permissions.")
  1491. @classmethod
  1492. def clear_partial_member_list(cls, dataset_id):
  1493. try:
  1494. db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
  1495. db.session.commit()
  1496. except Exception as e:
  1497. db.session.rollback()
  1498. raise e