llm_generator.py 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170
  1. import logging
  2. from langchain import PromptTemplate
  3. from langchain.chat_models.base import BaseChatModel
  4. from langchain.schema import HumanMessage, OutputParserException, BaseMessage
  5. from core.constant import llm_constant
  6. from core.llm.llm_builder import LLMBuilder
  7. from core.llm.streamable_open_ai import StreamableOpenAI
  8. from core.llm.token_calculator import TokenCalculator
  9. from core.prompt.output_parser.rule_config_generator import RuleConfigGeneratorOutputParser
  10. from core.prompt.output_parser.suggested_questions_after_answer import SuggestedQuestionsAfterAnswerOutputParser
  11. from core.prompt.prompt_template import JinjaPromptTemplate, OutLinePromptTemplate
  12. from core.prompt.prompts import CONVERSATION_TITLE_PROMPT, CONVERSATION_SUMMARY_PROMPT, INTRODUCTION_GENERATE_PROMPT
  13. # gpt-3.5-turbo works not well
  14. generate_base_model = 'text-davinci-003'
  15. class LLMGenerator:
  16. @classmethod
  17. def generate_conversation_name(cls, tenant_id: str, query, answer):
  18. prompt = CONVERSATION_TITLE_PROMPT
  19. prompt = prompt.format(query=query)
  20. llm: StreamableOpenAI = LLMBuilder.to_llm(
  21. tenant_id=tenant_id,
  22. model_name='gpt-3.5-turbo',
  23. max_tokens=50
  24. )
  25. if isinstance(llm, BaseChatModel):
  26. prompt = [HumanMessage(content=prompt)]
  27. response = llm.generate([prompt])
  28. answer = response.generations[0][0].text
  29. return answer.strip()
  30. @classmethod
  31. def generate_conversation_summary(cls, tenant_id: str, messages):
  32. max_tokens = 200
  33. model = 'gpt-3.5-turbo'
  34. prompt = CONVERSATION_SUMMARY_PROMPT
  35. prompt_with_empty_context = prompt.format(context='')
  36. prompt_tokens = TokenCalculator.get_num_tokens(model, prompt_with_empty_context)
  37. rest_tokens = llm_constant.max_context_token_length[model] - prompt_tokens - max_tokens
  38. context = ''
  39. for message in messages:
  40. if not message.answer:
  41. continue
  42. message_qa_text = "Human:" + message.query + "\nAI:" + message.answer + "\n"
  43. if rest_tokens - TokenCalculator.get_num_tokens(model, context + message_qa_text) > 0:
  44. context += message_qa_text
  45. prompt = prompt.format(context=context)
  46. llm: StreamableOpenAI = LLMBuilder.to_llm(
  47. tenant_id=tenant_id,
  48. model_name=model,
  49. max_tokens=max_tokens
  50. )
  51. if isinstance(llm, BaseChatModel):
  52. prompt = [HumanMessage(content=prompt)]
  53. response = llm.generate([prompt])
  54. answer = response.generations[0][0].text
  55. return answer.strip()
  56. @classmethod
  57. def generate_introduction(cls, tenant_id: str, pre_prompt: str):
  58. prompt = INTRODUCTION_GENERATE_PROMPT
  59. prompt = prompt.format(prompt=pre_prompt)
  60. llm: StreamableOpenAI = LLMBuilder.to_llm(
  61. tenant_id=tenant_id,
  62. model_name=generate_base_model,
  63. )
  64. if isinstance(llm, BaseChatModel):
  65. prompt = [HumanMessage(content=prompt)]
  66. response = llm.generate([prompt])
  67. answer = response.generations[0][0].text
  68. return answer.strip()
  69. @classmethod
  70. def generate_suggested_questions_after_answer(cls, tenant_id: str, histories: str):
  71. output_parser = SuggestedQuestionsAfterAnswerOutputParser()
  72. format_instructions = output_parser.get_format_instructions()
  73. prompt = JinjaPromptTemplate(
  74. template="{{histories}}\n{{format_instructions}}\nquestions:\n",
  75. input_variables=["histories"],
  76. partial_variables={"format_instructions": format_instructions}
  77. )
  78. _input = prompt.format_prompt(histories=histories)
  79. llm: StreamableOpenAI = LLMBuilder.to_llm(
  80. tenant_id=tenant_id,
  81. model_name='gpt-3.5-turbo',
  82. temperature=0,
  83. max_tokens=256
  84. )
  85. if isinstance(llm, BaseChatModel):
  86. query = [HumanMessage(content=_input.to_string())]
  87. else:
  88. query = _input.to_string()
  89. try:
  90. output = llm(query)
  91. if isinstance(output, BaseMessage):
  92. output = output.content
  93. questions = output_parser.parse(output)
  94. except Exception:
  95. logging.exception("Error generating suggested questions after answer")
  96. questions = []
  97. return questions
  98. @classmethod
  99. def generate_rule_config(cls, tenant_id: str, audiences: str, hoping_to_solve: str) -> dict:
  100. output_parser = RuleConfigGeneratorOutputParser()
  101. prompt = OutLinePromptTemplate(
  102. template=output_parser.get_format_instructions(),
  103. input_variables=["audiences", "hoping_to_solve"],
  104. partial_variables={
  105. "variable": '{variable}',
  106. "lanA": '{lanA}',
  107. "lanB": '{lanB}',
  108. "topic": '{topic}'
  109. },
  110. validate_template=False
  111. )
  112. _input = prompt.format_prompt(audiences=audiences, hoping_to_solve=hoping_to_solve)
  113. llm: StreamableOpenAI = LLMBuilder.to_llm(
  114. tenant_id=tenant_id,
  115. model_name=generate_base_model,
  116. temperature=0,
  117. max_tokens=512
  118. )
  119. if isinstance(llm, BaseChatModel):
  120. query = [HumanMessage(content=_input.to_string())]
  121. else:
  122. query = _input.to_string()
  123. try:
  124. output = llm(query)
  125. rule_config = output_parser.parse(output)
  126. except OutputParserException:
  127. raise ValueError('Please give a valid input for intended audience or hoping to solve problems.')
  128. except Exception:
  129. logging.exception("Error generating prompt")
  130. rule_config = {
  131. "prompt": "",
  132. "variables": [],
  133. "opening_statement": ""
  134. }
  135. return rule_config