| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 | from typing import Optionalfrom flask import current_app, Flaskfrom langchain.embeddings.base import Embeddingsfrom core.index.vector_index.vector_index import VectorIndexfrom core.model_manager import ModelManagerfrom core.model_runtime.entities.model_entities import ModelTypefrom core.model_runtime.errors.invoke import InvokeAuthorizationErrorfrom core.rerank.rerank import RerankRunnerfrom extensions.ext_database import dbfrom models.dataset import Datasetdefault_retrieval_model = {    'search_method': 'semantic_search',    'reranking_enable': False,    'reranking_model': {        'reranking_provider_name': '',        'reranking_model_name': ''    },    'top_k': 2,    'score_threshold_enabled': False}class RetrievalService:    @classmethod    def embedding_search(cls, flask_app: Flask, dataset_id: str, query: str,                         top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],                         all_documents: list, search_method: str, embeddings: Embeddings):        with flask_app.app_context():            dataset = db.session.query(Dataset).filter(                Dataset.id == dataset_id            ).first()            vector_index = VectorIndex(                dataset=dataset,                config=current_app.config,                embeddings=embeddings            )            documents = vector_index.search(                query,                search_type='similarity_score_threshold',                search_kwargs={                    'k': top_k,                    'score_threshold': score_threshold,                    'filter': {                        'group_id': [dataset.id]                    }                }            )            if documents:                if reranking_model and search_method == 'semantic_search':                    try:                        model_manager = ModelManager()                        rerank_model_instance = model_manager.get_model_instance(                            tenant_id=dataset.tenant_id,                            provider=reranking_model['reranking_provider_name'],                            model_type=ModelType.RERANK,                            model=reranking_model['reranking_model_name']                        )                    except InvokeAuthorizationError:                        return                    rerank_runner = RerankRunner(rerank_model_instance)                    all_documents.extend(rerank_runner.run(                        query=query,                        documents=documents,                        score_threshold=score_threshold,                        top_n=len(documents)                    ))                else:                    all_documents.extend(documents)    @classmethod    def full_text_index_search(cls, flask_app: Flask, dataset_id: str, query: str,                               top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],                               all_documents: list, search_method: str, embeddings: Embeddings):        with flask_app.app_context():            dataset = db.session.query(Dataset).filter(                Dataset.id == dataset_id            ).first()            vector_index = VectorIndex(                dataset=dataset,                config=current_app.config,                embeddings=embeddings            )            documents = vector_index.search_by_full_text_index(                query,                search_type='similarity_score_threshold',                top_k=top_k            )            if documents:                if reranking_model and search_method == 'full_text_search':                    try:                        model_manager = ModelManager()                        rerank_model_instance = model_manager.get_model_instance(                            tenant_id=dataset.tenant_id,                            provider=reranking_model['reranking_provider_name'],                            model_type=ModelType.RERANK,                            model=reranking_model['reranking_model_name']                        )                    except InvokeAuthorizationError:                        return                    rerank_runner = RerankRunner(rerank_model_instance)                    all_documents.extend(rerank_runner.run(                        query=query,                        documents=documents,                        score_threshold=score_threshold,                        top_n=len(documents)                    ))                else:                    all_documents.extend(documents)
 |