node.py 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714
  1. import json
  2. from collections.abc import Generator, Mapping, Sequence
  3. from typing import TYPE_CHECKING, Any, Optional, cast
  4. from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
  5. from core.entities.model_entities import ModelStatus
  6. from core.entities.provider_entities import QuotaUnit
  7. from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
  8. from core.memory.token_buffer_memory import TokenBufferMemory
  9. from core.model_manager import ModelInstance, ModelManager
  10. from core.model_runtime.entities import (
  11. AudioPromptMessageContent,
  12. ImagePromptMessageContent,
  13. PromptMessage,
  14. PromptMessageContentType,
  15. TextPromptMessageContent,
  16. )
  17. from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage
  18. from core.model_runtime.entities.model_entities import ModelType
  19. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  20. from core.model_runtime.utils.encoders import jsonable_encoder
  21. from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
  22. from core.prompt.entities.advanced_prompt_entities import CompletionModelPromptTemplate, MemoryConfig
  23. from core.prompt.utils.prompt_message_util import PromptMessageUtil
  24. from core.variables import (
  25. ArrayAnySegment,
  26. ArrayFileSegment,
  27. ArraySegment,
  28. FileSegment,
  29. NoneSegment,
  30. ObjectSegment,
  31. StringSegment,
  32. )
  33. from core.workflow.constants import SYSTEM_VARIABLE_NODE_ID
  34. from core.workflow.entities.node_entities import NodeRunMetadataKey, NodeRunResult
  35. from core.workflow.enums import SystemVariableKey
  36. from core.workflow.graph_engine.entities.event import InNodeEvent
  37. from core.workflow.nodes.base import BaseNode
  38. from core.workflow.nodes.enums import NodeType
  39. from core.workflow.nodes.event import (
  40. ModelInvokeCompletedEvent,
  41. NodeEvent,
  42. RunCompletedEvent,
  43. RunRetrieverResourceEvent,
  44. RunStreamChunkEvent,
  45. )
  46. from core.workflow.utils.variable_template_parser import VariableTemplateParser
  47. from extensions.ext_database import db
  48. from models.model import Conversation
  49. from models.provider import Provider, ProviderType
  50. from models.workflow import WorkflowNodeExecutionStatus
  51. from .entities import (
  52. LLMNodeChatModelMessage,
  53. LLMNodeCompletionModelPromptTemplate,
  54. LLMNodeData,
  55. ModelConfig,
  56. )
  57. from .exc import (
  58. InvalidContextStructureError,
  59. InvalidVariableTypeError,
  60. LLMModeRequiredError,
  61. LLMNodeError,
  62. ModelNotExistError,
  63. NoPromptFoundError,
  64. VariableNotFoundError,
  65. )
  66. if TYPE_CHECKING:
  67. from core.file.models import File
  68. class LLMNode(BaseNode[LLMNodeData]):
  69. _node_data_cls = LLMNodeData
  70. _node_type = NodeType.LLM
  71. def _run(self) -> NodeRunResult | Generator[NodeEvent | InNodeEvent, None, None]:
  72. node_inputs = None
  73. process_data = None
  74. try:
  75. # init messages template
  76. self.node_data.prompt_template = self._transform_chat_messages(self.node_data.prompt_template)
  77. # fetch variables and fetch values from variable pool
  78. inputs = self._fetch_inputs(node_data=self.node_data)
  79. # fetch jinja2 inputs
  80. jinja_inputs = self._fetch_jinja_inputs(node_data=self.node_data)
  81. # merge inputs
  82. inputs.update(jinja_inputs)
  83. node_inputs = {}
  84. # fetch files
  85. files = (
  86. self._fetch_files(selector=self.node_data.vision.configs.variable_selector)
  87. if self.node_data.vision.enabled
  88. else []
  89. )
  90. if files:
  91. node_inputs["#files#"] = [file.to_dict() for file in files]
  92. # fetch context value
  93. generator = self._fetch_context(node_data=self.node_data)
  94. context = None
  95. for event in generator:
  96. if isinstance(event, RunRetrieverResourceEvent):
  97. context = event.context
  98. yield event
  99. if context:
  100. node_inputs["#context#"] = context
  101. # fetch model config
  102. model_instance, model_config = self._fetch_model_config(self.node_data.model)
  103. # fetch memory
  104. memory = self._fetch_memory(node_data_memory=self.node_data.memory, model_instance=model_instance)
  105. # fetch prompt messages
  106. if self.node_data.memory:
  107. query = self.graph_runtime_state.variable_pool.get((SYSTEM_VARIABLE_NODE_ID, SystemVariableKey.QUERY))
  108. if not query:
  109. raise VariableNotFoundError("Query not found")
  110. query = query.text
  111. else:
  112. query = None
  113. prompt_messages, stop = self._fetch_prompt_messages(
  114. system_query=query,
  115. inputs=inputs,
  116. files=files,
  117. context=context,
  118. memory=memory,
  119. model_config=model_config,
  120. prompt_template=self.node_data.prompt_template,
  121. memory_config=self.node_data.memory,
  122. vision_enabled=self.node_data.vision.enabled,
  123. vision_detail=self.node_data.vision.configs.detail,
  124. )
  125. process_data = {
  126. "model_mode": model_config.mode,
  127. "prompts": PromptMessageUtil.prompt_messages_to_prompt_for_saving(
  128. model_mode=model_config.mode, prompt_messages=prompt_messages
  129. ),
  130. "model_provider": model_config.provider,
  131. "model_name": model_config.model,
  132. }
  133. # handle invoke result
  134. generator = self._invoke_llm(
  135. node_data_model=self.node_data.model,
  136. model_instance=model_instance,
  137. prompt_messages=prompt_messages,
  138. stop=stop,
  139. )
  140. result_text = ""
  141. usage = LLMUsage.empty_usage()
  142. finish_reason = None
  143. for event in generator:
  144. if isinstance(event, RunStreamChunkEvent):
  145. yield event
  146. elif isinstance(event, ModelInvokeCompletedEvent):
  147. result_text = event.text
  148. usage = event.usage
  149. finish_reason = event.finish_reason
  150. break
  151. except LLMNodeError as e:
  152. yield RunCompletedEvent(
  153. run_result=NodeRunResult(
  154. status=WorkflowNodeExecutionStatus.FAILED,
  155. error=str(e),
  156. inputs=node_inputs,
  157. process_data=process_data,
  158. )
  159. )
  160. return
  161. outputs = {"text": result_text, "usage": jsonable_encoder(usage), "finish_reason": finish_reason}
  162. yield RunCompletedEvent(
  163. run_result=NodeRunResult(
  164. status=WorkflowNodeExecutionStatus.SUCCEEDED,
  165. inputs=node_inputs,
  166. process_data=process_data,
  167. outputs=outputs,
  168. metadata={
  169. NodeRunMetadataKey.TOTAL_TOKENS: usage.total_tokens,
  170. NodeRunMetadataKey.TOTAL_PRICE: usage.total_price,
  171. NodeRunMetadataKey.CURRENCY: usage.currency,
  172. },
  173. llm_usage=usage,
  174. )
  175. )
  176. def _invoke_llm(
  177. self,
  178. node_data_model: ModelConfig,
  179. model_instance: ModelInstance,
  180. prompt_messages: list[PromptMessage],
  181. stop: Optional[list[str]] = None,
  182. ) -> Generator[NodeEvent, None, None]:
  183. db.session.close()
  184. invoke_result = model_instance.invoke_llm(
  185. prompt_messages=prompt_messages,
  186. model_parameters=node_data_model.completion_params,
  187. stop=stop,
  188. stream=True,
  189. user=self.user_id,
  190. )
  191. # handle invoke result
  192. generator = self._handle_invoke_result(invoke_result=invoke_result)
  193. usage = LLMUsage.empty_usage()
  194. for event in generator:
  195. yield event
  196. if isinstance(event, ModelInvokeCompletedEvent):
  197. usage = event.usage
  198. # deduct quota
  199. self.deduct_llm_quota(tenant_id=self.tenant_id, model_instance=model_instance, usage=usage)
  200. def _handle_invoke_result(self, invoke_result: LLMResult | Generator) -> Generator[NodeEvent, None, None]:
  201. if isinstance(invoke_result, LLMResult):
  202. return
  203. model = None
  204. prompt_messages: list[PromptMessage] = []
  205. full_text = ""
  206. usage = None
  207. finish_reason = None
  208. for result in invoke_result:
  209. text = result.delta.message.content
  210. full_text += text
  211. yield RunStreamChunkEvent(chunk_content=text, from_variable_selector=[self.node_id, "text"])
  212. if not model:
  213. model = result.model
  214. if not prompt_messages:
  215. prompt_messages = result.prompt_messages
  216. if not usage and result.delta.usage:
  217. usage = result.delta.usage
  218. if not finish_reason and result.delta.finish_reason:
  219. finish_reason = result.delta.finish_reason
  220. if not usage:
  221. usage = LLMUsage.empty_usage()
  222. yield ModelInvokeCompletedEvent(text=full_text, usage=usage, finish_reason=finish_reason)
  223. def _transform_chat_messages(
  224. self, messages: Sequence[LLMNodeChatModelMessage] | LLMNodeCompletionModelPromptTemplate, /
  225. ) -> Sequence[LLMNodeChatModelMessage] | LLMNodeCompletionModelPromptTemplate:
  226. if isinstance(messages, LLMNodeCompletionModelPromptTemplate):
  227. if messages.edition_type == "jinja2" and messages.jinja2_text:
  228. messages.text = messages.jinja2_text
  229. return messages
  230. for message in messages:
  231. if message.edition_type == "jinja2" and message.jinja2_text:
  232. message.text = message.jinja2_text
  233. return messages
  234. def _fetch_jinja_inputs(self, node_data: LLMNodeData) -> dict[str, str]:
  235. variables = {}
  236. if not node_data.prompt_config:
  237. return variables
  238. for variable_selector in node_data.prompt_config.jinja2_variables or []:
  239. variable_name = variable_selector.variable
  240. variable = self.graph_runtime_state.variable_pool.get(variable_selector.value_selector)
  241. if variable is None:
  242. raise VariableNotFoundError(f"Variable {variable_selector.variable} not found")
  243. def parse_dict(input_dict: Mapping[str, Any]) -> str:
  244. """
  245. Parse dict into string
  246. """
  247. # check if it's a context structure
  248. if "metadata" in input_dict and "_source" in input_dict["metadata"] and "content" in input_dict:
  249. return input_dict["content"]
  250. # else, parse the dict
  251. try:
  252. return json.dumps(input_dict, ensure_ascii=False)
  253. except Exception:
  254. return str(input_dict)
  255. if isinstance(variable, ArraySegment):
  256. result = ""
  257. for item in variable.value:
  258. if isinstance(item, dict):
  259. result += parse_dict(item)
  260. else:
  261. result += str(item)
  262. result += "\n"
  263. value = result.strip()
  264. elif isinstance(variable, ObjectSegment):
  265. value = parse_dict(variable.value)
  266. else:
  267. value = variable.text
  268. variables[variable_name] = value
  269. return variables
  270. def _fetch_inputs(self, node_data: LLMNodeData) -> dict[str, Any]:
  271. inputs = {}
  272. prompt_template = node_data.prompt_template
  273. variable_selectors = []
  274. if isinstance(prompt_template, list):
  275. for prompt in prompt_template:
  276. variable_template_parser = VariableTemplateParser(template=prompt.text)
  277. variable_selectors.extend(variable_template_parser.extract_variable_selectors())
  278. elif isinstance(prompt_template, CompletionModelPromptTemplate):
  279. variable_template_parser = VariableTemplateParser(template=prompt_template.text)
  280. variable_selectors = variable_template_parser.extract_variable_selectors()
  281. for variable_selector in variable_selectors:
  282. variable = self.graph_runtime_state.variable_pool.get(variable_selector.value_selector)
  283. if variable is None:
  284. raise VariableNotFoundError(f"Variable {variable_selector.variable} not found")
  285. if isinstance(variable, NoneSegment):
  286. inputs[variable_selector.variable] = ""
  287. inputs[variable_selector.variable] = variable.to_object()
  288. memory = node_data.memory
  289. if memory and memory.query_prompt_template:
  290. query_variable_selectors = VariableTemplateParser(
  291. template=memory.query_prompt_template
  292. ).extract_variable_selectors()
  293. for variable_selector in query_variable_selectors:
  294. variable = self.graph_runtime_state.variable_pool.get(variable_selector.value_selector)
  295. if variable is None:
  296. raise VariableNotFoundError(f"Variable {variable_selector.variable} not found")
  297. if isinstance(variable, NoneSegment):
  298. continue
  299. inputs[variable_selector.variable] = variable.to_object()
  300. return inputs
  301. def _fetch_files(self, *, selector: Sequence[str]) -> Sequence["File"]:
  302. variable = self.graph_runtime_state.variable_pool.get(selector)
  303. if variable is None:
  304. return []
  305. elif isinstance(variable, FileSegment):
  306. return [variable.value]
  307. elif isinstance(variable, ArrayFileSegment):
  308. return variable.value
  309. elif isinstance(variable, NoneSegment | ArrayAnySegment):
  310. return []
  311. raise InvalidVariableTypeError(f"Invalid variable type: {type(variable)}")
  312. def _fetch_context(self, node_data: LLMNodeData):
  313. if not node_data.context.enabled:
  314. return
  315. if not node_data.context.variable_selector:
  316. return
  317. context_value_variable = self.graph_runtime_state.variable_pool.get(node_data.context.variable_selector)
  318. if context_value_variable:
  319. if isinstance(context_value_variable, StringSegment):
  320. yield RunRetrieverResourceEvent(retriever_resources=[], context=context_value_variable.value)
  321. elif isinstance(context_value_variable, ArraySegment):
  322. context_str = ""
  323. original_retriever_resource = []
  324. for item in context_value_variable.value:
  325. if isinstance(item, str):
  326. context_str += item + "\n"
  327. else:
  328. if "content" not in item:
  329. raise InvalidContextStructureError(f"Invalid context structure: {item}")
  330. context_str += item["content"] + "\n"
  331. retriever_resource = self._convert_to_original_retriever_resource(item)
  332. if retriever_resource:
  333. original_retriever_resource.append(retriever_resource)
  334. yield RunRetrieverResourceEvent(
  335. retriever_resources=original_retriever_resource, context=context_str.strip()
  336. )
  337. def _convert_to_original_retriever_resource(self, context_dict: dict) -> Optional[dict]:
  338. if (
  339. "metadata" in context_dict
  340. and "_source" in context_dict["metadata"]
  341. and context_dict["metadata"]["_source"] == "knowledge"
  342. ):
  343. metadata = context_dict.get("metadata", {})
  344. source = {
  345. "position": metadata.get("position"),
  346. "dataset_id": metadata.get("dataset_id"),
  347. "dataset_name": metadata.get("dataset_name"),
  348. "document_id": metadata.get("document_id"),
  349. "document_name": metadata.get("document_name"),
  350. "data_source_type": metadata.get("document_data_source_type"),
  351. "segment_id": metadata.get("segment_id"),
  352. "retriever_from": metadata.get("retriever_from"),
  353. "score": metadata.get("score"),
  354. "hit_count": metadata.get("segment_hit_count"),
  355. "word_count": metadata.get("segment_word_count"),
  356. "segment_position": metadata.get("segment_position"),
  357. "index_node_hash": metadata.get("segment_index_node_hash"),
  358. "content": context_dict.get("content"),
  359. "page": metadata.get("page"),
  360. }
  361. return source
  362. return None
  363. def _fetch_model_config(
  364. self, node_data_model: ModelConfig
  365. ) -> tuple[ModelInstance, ModelConfigWithCredentialsEntity]:
  366. model_name = node_data_model.name
  367. provider_name = node_data_model.provider
  368. model_manager = ModelManager()
  369. model_instance = model_manager.get_model_instance(
  370. tenant_id=self.tenant_id, model_type=ModelType.LLM, provider=provider_name, model=model_name
  371. )
  372. provider_model_bundle = model_instance.provider_model_bundle
  373. model_type_instance = model_instance.model_type_instance
  374. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  375. model_credentials = model_instance.credentials
  376. # check model
  377. provider_model = provider_model_bundle.configuration.get_provider_model(
  378. model=model_name, model_type=ModelType.LLM
  379. )
  380. if provider_model is None:
  381. raise ModelNotExistError(f"Model {model_name} not exist.")
  382. if provider_model.status == ModelStatus.NO_CONFIGURE:
  383. raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
  384. elif provider_model.status == ModelStatus.NO_PERMISSION:
  385. raise ModelCurrentlyNotSupportError(f"Dify Hosted OpenAI {model_name} currently not support.")
  386. elif provider_model.status == ModelStatus.QUOTA_EXCEEDED:
  387. raise QuotaExceededError(f"Model provider {provider_name} quota exceeded.")
  388. # model config
  389. completion_params = node_data_model.completion_params
  390. stop = []
  391. if "stop" in completion_params:
  392. stop = completion_params["stop"]
  393. del completion_params["stop"]
  394. # get model mode
  395. model_mode = node_data_model.mode
  396. if not model_mode:
  397. raise LLMModeRequiredError("LLM mode is required.")
  398. model_schema = model_type_instance.get_model_schema(model_name, model_credentials)
  399. if not model_schema:
  400. raise ModelNotExistError(f"Model {model_name} not exist.")
  401. return model_instance, ModelConfigWithCredentialsEntity(
  402. provider=provider_name,
  403. model=model_name,
  404. model_schema=model_schema,
  405. mode=model_mode,
  406. provider_model_bundle=provider_model_bundle,
  407. credentials=model_credentials,
  408. parameters=completion_params,
  409. stop=stop,
  410. )
  411. def _fetch_memory(
  412. self, node_data_memory: Optional[MemoryConfig], model_instance: ModelInstance
  413. ) -> Optional[TokenBufferMemory]:
  414. if not node_data_memory:
  415. return None
  416. # get conversation id
  417. conversation_id_variable = self.graph_runtime_state.variable_pool.get(
  418. ["sys", SystemVariableKey.CONVERSATION_ID.value]
  419. )
  420. if not isinstance(conversation_id_variable, StringSegment):
  421. return None
  422. conversation_id = conversation_id_variable.value
  423. # get conversation
  424. conversation = (
  425. db.session.query(Conversation)
  426. .filter(Conversation.app_id == self.app_id, Conversation.id == conversation_id)
  427. .first()
  428. )
  429. if not conversation:
  430. return None
  431. memory = TokenBufferMemory(conversation=conversation, model_instance=model_instance)
  432. return memory
  433. def _fetch_prompt_messages(
  434. self,
  435. *,
  436. system_query: str | None = None,
  437. inputs: dict[str, str] | None = None,
  438. files: Sequence["File"],
  439. context: str | None = None,
  440. memory: TokenBufferMemory | None = None,
  441. model_config: ModelConfigWithCredentialsEntity,
  442. prompt_template: Sequence[LLMNodeChatModelMessage] | LLMNodeCompletionModelPromptTemplate,
  443. memory_config: MemoryConfig | None = None,
  444. vision_enabled: bool = False,
  445. vision_detail: ImagePromptMessageContent.DETAIL,
  446. ) -> tuple[list[PromptMessage], Optional[list[str]]]:
  447. inputs = inputs or {}
  448. prompt_transform = AdvancedPromptTransform(with_variable_tmpl=True)
  449. prompt_messages = prompt_transform.get_prompt(
  450. prompt_template=prompt_template,
  451. inputs=inputs,
  452. query=system_query or "",
  453. files=files,
  454. context=context,
  455. memory_config=memory_config,
  456. memory=memory,
  457. model_config=model_config,
  458. )
  459. stop = model_config.stop
  460. filtered_prompt_messages = []
  461. for prompt_message in prompt_messages:
  462. if prompt_message.is_empty():
  463. continue
  464. if not isinstance(prompt_message.content, str):
  465. prompt_message_content = []
  466. for content_item in prompt_message.content or []:
  467. # Skip image if vision is disabled
  468. if not vision_enabled and content_item.type == PromptMessageContentType.IMAGE:
  469. continue
  470. if isinstance(content_item, ImagePromptMessageContent):
  471. # Override vision config if LLM node has vision config,
  472. # cuz vision detail is related to the configuration from FileUpload feature.
  473. content_item.detail = vision_detail
  474. prompt_message_content.append(content_item)
  475. elif isinstance(content_item, TextPromptMessageContent | AudioPromptMessageContent):
  476. prompt_message_content.append(content_item)
  477. if len(prompt_message_content) > 1:
  478. prompt_message.content = prompt_message_content
  479. elif (
  480. len(prompt_message_content) == 1 and prompt_message_content[0].type == PromptMessageContentType.TEXT
  481. ):
  482. prompt_message.content = prompt_message_content[0].data
  483. filtered_prompt_messages.append(prompt_message)
  484. if not filtered_prompt_messages:
  485. raise NoPromptFoundError(
  486. "No prompt found in the LLM configuration. "
  487. "Please ensure a prompt is properly configured before proceeding."
  488. )
  489. return filtered_prompt_messages, stop
  490. @classmethod
  491. def deduct_llm_quota(cls, tenant_id: str, model_instance: ModelInstance, usage: LLMUsage) -> None:
  492. provider_model_bundle = model_instance.provider_model_bundle
  493. provider_configuration = provider_model_bundle.configuration
  494. if provider_configuration.using_provider_type != ProviderType.SYSTEM:
  495. return
  496. system_configuration = provider_configuration.system_configuration
  497. quota_unit = None
  498. for quota_configuration in system_configuration.quota_configurations:
  499. if quota_configuration.quota_type == system_configuration.current_quota_type:
  500. quota_unit = quota_configuration.quota_unit
  501. if quota_configuration.quota_limit == -1:
  502. return
  503. break
  504. used_quota = None
  505. if quota_unit:
  506. if quota_unit == QuotaUnit.TOKENS:
  507. used_quota = usage.total_tokens
  508. elif quota_unit == QuotaUnit.CREDITS:
  509. used_quota = 1
  510. if "gpt-4" in model_instance.model:
  511. used_quota = 20
  512. else:
  513. used_quota = 1
  514. if used_quota is not None and system_configuration.current_quota_type is not None:
  515. db.session.query(Provider).filter(
  516. Provider.tenant_id == tenant_id,
  517. Provider.provider_name == model_instance.provider,
  518. Provider.provider_type == ProviderType.SYSTEM.value,
  519. Provider.quota_type == system_configuration.current_quota_type.value,
  520. Provider.quota_limit > Provider.quota_used,
  521. ).update({"quota_used": Provider.quota_used + used_quota})
  522. db.session.commit()
  523. @classmethod
  524. def _extract_variable_selector_to_variable_mapping(
  525. cls,
  526. *,
  527. graph_config: Mapping[str, Any],
  528. node_id: str,
  529. node_data: LLMNodeData,
  530. ) -> Mapping[str, Sequence[str]]:
  531. prompt_template = node_data.prompt_template
  532. variable_selectors = []
  533. if isinstance(prompt_template, list) and all(
  534. isinstance(prompt, LLMNodeChatModelMessage) for prompt in prompt_template
  535. ):
  536. for prompt in prompt_template:
  537. if prompt.edition_type != "jinja2":
  538. variable_template_parser = VariableTemplateParser(template=prompt.text)
  539. variable_selectors.extend(variable_template_parser.extract_variable_selectors())
  540. elif isinstance(prompt_template, LLMNodeCompletionModelPromptTemplate):
  541. if prompt_template.edition_type != "jinja2":
  542. variable_template_parser = VariableTemplateParser(template=prompt_template.text)
  543. variable_selectors = variable_template_parser.extract_variable_selectors()
  544. else:
  545. raise InvalidVariableTypeError(f"Invalid prompt template type: {type(prompt_template)}")
  546. variable_mapping = {}
  547. for variable_selector in variable_selectors:
  548. variable_mapping[variable_selector.variable] = variable_selector.value_selector
  549. memory = node_data.memory
  550. if memory and memory.query_prompt_template:
  551. query_variable_selectors = VariableTemplateParser(
  552. template=memory.query_prompt_template
  553. ).extract_variable_selectors()
  554. for variable_selector in query_variable_selectors:
  555. variable_mapping[variable_selector.variable] = variable_selector.value_selector
  556. if node_data.context.enabled:
  557. variable_mapping["#context#"] = node_data.context.variable_selector
  558. if node_data.vision.enabled:
  559. variable_mapping["#files#"] = ["sys", SystemVariableKey.FILES.value]
  560. if node_data.memory:
  561. variable_mapping["#sys.query#"] = ["sys", SystemVariableKey.QUERY.value]
  562. if node_data.prompt_config:
  563. enable_jinja = False
  564. if isinstance(prompt_template, list):
  565. for prompt in prompt_template:
  566. if prompt.edition_type == "jinja2":
  567. enable_jinja = True
  568. break
  569. else:
  570. if prompt_template.edition_type == "jinja2":
  571. enable_jinja = True
  572. if enable_jinja:
  573. for variable_selector in node_data.prompt_config.jinja2_variables or []:
  574. variable_mapping[variable_selector.variable] = variable_selector.value_selector
  575. variable_mapping = {node_id + "." + key: value for key, value in variable_mapping.items()}
  576. return variable_mapping
  577. @classmethod
  578. def get_default_config(cls, filters: Optional[dict] = None) -> dict:
  579. return {
  580. "type": "llm",
  581. "config": {
  582. "prompt_templates": {
  583. "chat_model": {
  584. "prompts": [
  585. {"role": "system", "text": "You are a helpful AI assistant.", "edition_type": "basic"}
  586. ]
  587. },
  588. "completion_model": {
  589. "conversation_histories_role": {"user_prefix": "Human", "assistant_prefix": "Assistant"},
  590. "prompt": {
  591. "text": "Here is the chat histories between human and assistant, inside "
  592. "<histories></histories> XML tags.\n\n<histories>\n{{"
  593. "#histories#}}\n</histories>\n\n\nHuman: {{#sys.query#}}\n\nAssistant:",
  594. "edition_type": "basic",
  595. },
  596. "stop": ["Human:"],
  597. },
  598. }
  599. },
  600. }