dataset_service.py 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521
  1. import json
  2. import logging
  3. import datetime
  4. import time
  5. import random
  6. from typing import Optional
  7. from extensions.ext_redis import redis_client
  8. from flask_login import current_user
  9. from core.index.index_builder import IndexBuilder
  10. from events.dataset_event import dataset_was_deleted
  11. from events.document_event import document_was_deleted
  12. from extensions.ext_database import db
  13. from models.account import Account
  14. from models.dataset import Dataset, Document, DatasetQuery, DatasetProcessRule, AppDatasetJoin
  15. from models.model import UploadFile
  16. from services.errors.account import NoPermissionError
  17. from services.errors.dataset import DatasetNameDuplicateError
  18. from services.errors.document import DocumentIndexingError
  19. from services.errors.file import FileNotExistsError
  20. from tasks.document_indexing_task import document_indexing_task
  21. class DatasetService:
  22. @staticmethod
  23. def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None):
  24. if user:
  25. permission_filter = db.or_(Dataset.created_by == user.id,
  26. Dataset.permission == 'all_team_members')
  27. else:
  28. permission_filter = Dataset.permission == 'all_team_members'
  29. datasets = Dataset.query.filter(
  30. db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
  31. .paginate(
  32. page=page,
  33. per_page=per_page,
  34. max_per_page=100,
  35. error_out=False
  36. )
  37. return datasets.items, datasets.total
  38. @staticmethod
  39. def get_process_rules(dataset_id):
  40. # get the latest process rule
  41. dataset_process_rule = db.session.query(DatasetProcessRule). \
  42. filter(DatasetProcessRule.dataset_id == dataset_id). \
  43. order_by(DatasetProcessRule.created_at.desc()). \
  44. limit(1). \
  45. one_or_none()
  46. if dataset_process_rule:
  47. mode = dataset_process_rule.mode
  48. rules = dataset_process_rule.rules_dict
  49. else:
  50. mode = DocumentService.DEFAULT_RULES['mode']
  51. rules = DocumentService.DEFAULT_RULES['rules']
  52. return {
  53. 'mode': mode,
  54. 'rules': rules
  55. }
  56. @staticmethod
  57. def get_datasets_by_ids(ids, tenant_id):
  58. datasets = Dataset.query.filter(Dataset.id.in_(ids),
  59. Dataset.tenant_id == tenant_id).paginate(
  60. page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
  61. return datasets.items, datasets.total
  62. @staticmethod
  63. def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
  64. # check if dataset name already exists
  65. if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
  66. raise DatasetNameDuplicateError(
  67. f'Dataset with name {name} already exists.')
  68. dataset = Dataset(name=name, indexing_technique=indexing_technique, data_source_type='upload_file')
  69. # dataset = Dataset(name=name, provider=provider, config=config)
  70. dataset.created_by = account.id
  71. dataset.updated_by = account.id
  72. dataset.tenant_id = tenant_id
  73. db.session.add(dataset)
  74. db.session.commit()
  75. return dataset
  76. @staticmethod
  77. def get_dataset(dataset_id):
  78. dataset = Dataset.query.filter_by(
  79. id=dataset_id
  80. ).first()
  81. if dataset is None:
  82. return None
  83. else:
  84. return dataset
  85. @staticmethod
  86. def update_dataset(dataset_id, data, user):
  87. dataset = DatasetService.get_dataset(dataset_id)
  88. DatasetService.check_dataset_permission(dataset, user)
  89. filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
  90. filtered_data['updated_by'] = user.id
  91. filtered_data['updated_at'] = datetime.datetime.now()
  92. dataset.query.filter_by(id=dataset_id).update(filtered_data)
  93. db.session.commit()
  94. return dataset
  95. @staticmethod
  96. def delete_dataset(dataset_id, user):
  97. # todo: cannot delete dataset if it is being processed
  98. dataset = DatasetService.get_dataset(dataset_id)
  99. if dataset is None:
  100. return False
  101. DatasetService.check_dataset_permission(dataset, user)
  102. dataset_was_deleted.send(dataset)
  103. db.session.delete(dataset)
  104. db.session.commit()
  105. return True
  106. @staticmethod
  107. def check_dataset_permission(dataset, user):
  108. if dataset.tenant_id != user.current_tenant_id:
  109. logging.debug(
  110. f'User {user.id} does not have permission to access dataset {dataset.id}')
  111. raise NoPermissionError(
  112. 'You do not have permission to access this dataset.')
  113. if dataset.permission == 'only_me' and dataset.created_by != user.id:
  114. logging.debug(
  115. f'User {user.id} does not have permission to access dataset {dataset.id}')
  116. raise NoPermissionError(
  117. 'You do not have permission to access this dataset.')
  118. @staticmethod
  119. def get_dataset_queries(dataset_id: str, page: int, per_page: int):
  120. dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
  121. .order_by(db.desc(DatasetQuery.created_at)) \
  122. .paginate(
  123. page=page, per_page=per_page, max_per_page=100, error_out=False
  124. )
  125. return dataset_queries.items, dataset_queries.total
  126. @staticmethod
  127. def get_related_apps(dataset_id: str):
  128. return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
  129. .order_by(db.desc(AppDatasetJoin.created_at)).all()
  130. class DocumentService:
  131. DEFAULT_RULES = {
  132. 'mode': 'custom',
  133. 'rules': {
  134. 'pre_processing_rules': [
  135. {'id': 'remove_extra_spaces', 'enabled': True},
  136. {'id': 'remove_urls_emails', 'enabled': False}
  137. ],
  138. 'segmentation': {
  139. 'delimiter': '\n',
  140. 'max_tokens': 500
  141. }
  142. }
  143. }
  144. DOCUMENT_METADATA_SCHEMA = {
  145. "book": {
  146. "title": str,
  147. "language": str,
  148. "author": str,
  149. "publisher": str,
  150. "publication_date": str,
  151. "isbn": str,
  152. "category": str,
  153. },
  154. "web_page": {
  155. "title": str,
  156. "url": str,
  157. "language": str,
  158. "publish_date": str,
  159. "author/publisher": str,
  160. "topic/keywords": str,
  161. "description": str,
  162. },
  163. "paper": {
  164. "title": str,
  165. "language": str,
  166. "author": str,
  167. "publish_date": str,
  168. "journal/conference_name": str,
  169. "volume/issue/page_numbers": str,
  170. "doi": str,
  171. "topic/keywords": str,
  172. "abstract": str,
  173. },
  174. "social_media_post": {
  175. "platform": str,
  176. "author/username": str,
  177. "publish_date": str,
  178. "post_url": str,
  179. "topic/tags": str,
  180. },
  181. "wikipedia_entry": {
  182. "title": str,
  183. "language": str,
  184. "web_page_url": str,
  185. "last_edit_date": str,
  186. "editor/contributor": str,
  187. "summary/introduction": str,
  188. },
  189. "personal_document": {
  190. "title": str,
  191. "author": str,
  192. "creation_date": str,
  193. "last_modified_date": str,
  194. "document_type": str,
  195. "tags/category": str,
  196. },
  197. "business_document": {
  198. "title": str,
  199. "author": str,
  200. "creation_date": str,
  201. "last_modified_date": str,
  202. "document_type": str,
  203. "department/team": str,
  204. },
  205. "im_chat_log": {
  206. "chat_platform": str,
  207. "chat_participants/group_name": str,
  208. "start_date": str,
  209. "end_date": str,
  210. "summary": str,
  211. },
  212. "synced_from_notion": {
  213. "title": str,
  214. "language": str,
  215. "author/creator": str,
  216. "creation_date": str,
  217. "last_modified_date": str,
  218. "notion_page_link": str,
  219. "category/tags": str,
  220. "description": str,
  221. },
  222. "synced_from_github": {
  223. "repository_name": str,
  224. "repository_description": str,
  225. "repository_owner/organization": str,
  226. "code_filename": str,
  227. "code_file_path": str,
  228. "programming_language": str,
  229. "github_link": str,
  230. "open_source_license": str,
  231. "commit_date": str,
  232. "commit_author": str
  233. }
  234. }
  235. @staticmethod
  236. def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
  237. document = db.session.query(Document).filter(
  238. Document.id == document_id,
  239. Document.dataset_id == dataset_id
  240. ).first()
  241. return document
  242. @staticmethod
  243. def get_document_file_detail(file_id: str):
  244. file_detail = db.session.query(UploadFile). \
  245. filter(UploadFile.id == file_id). \
  246. one_or_none()
  247. return file_detail
  248. @staticmethod
  249. def check_archived(document):
  250. if document.archived:
  251. return True
  252. else:
  253. return False
  254. @staticmethod
  255. def delete_document(document):
  256. if document.indexing_status in ["parsing", "cleaning", "splitting", "indexing"]:
  257. raise DocumentIndexingError()
  258. # trigger document_was_deleted signal
  259. document_was_deleted.send(document.id, dataset_id=document.dataset_id)
  260. db.session.delete(document)
  261. db.session.commit()
  262. @staticmethod
  263. def pause_document(document):
  264. if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
  265. raise DocumentIndexingError()
  266. # update document to be paused
  267. document.is_paused = True
  268. document.paused_by = current_user.id
  269. document.paused_at = datetime.datetime.utcnow()
  270. db.session.add(document)
  271. db.session.commit()
  272. # set document paused flag
  273. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  274. redis_client.setnx(indexing_cache_key, "True")
  275. @staticmethod
  276. def recover_document(document):
  277. if not document.is_paused:
  278. raise DocumentIndexingError()
  279. # update document to be recover
  280. document.is_paused = False
  281. document.paused_by = current_user.id
  282. document.paused_at = time.time()
  283. db.session.add(document)
  284. db.session.commit()
  285. # delete paused flag
  286. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  287. redis_client.delete(indexing_cache_key)
  288. # trigger async task
  289. document_indexing_task.delay(document.dataset_id, document.id)
  290. @staticmethod
  291. def get_documents_position(dataset_id):
  292. documents = Document.query.filter_by(dataset_id=dataset_id).all()
  293. if documents:
  294. return len(documents) + 1
  295. else:
  296. return 1
  297. @staticmethod
  298. def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
  299. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  300. created_from: str = 'web'):
  301. if not dataset.indexing_technique:
  302. if 'indexing_technique' not in document_data \
  303. or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
  304. raise ValueError("Indexing technique is required")
  305. dataset.indexing_technique = document_data["indexing_technique"]
  306. if dataset.indexing_technique == 'high_quality':
  307. IndexBuilder.get_default_service_context(dataset.tenant_id)
  308. # save process rule
  309. if not dataset_process_rule:
  310. process_rule = document_data["process_rule"]
  311. if process_rule["mode"] == "custom":
  312. dataset_process_rule = DatasetProcessRule(
  313. dataset_id=dataset.id,
  314. mode=process_rule["mode"],
  315. rules=json.dumps(process_rule["rules"]),
  316. created_by=account.id
  317. )
  318. elif process_rule["mode"] == "automatic":
  319. dataset_process_rule = DatasetProcessRule(
  320. dataset_id=dataset.id,
  321. mode=process_rule["mode"],
  322. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  323. created_by=account.id
  324. )
  325. db.session.add(dataset_process_rule)
  326. db.session.commit()
  327. file_name = ''
  328. data_source_info = {}
  329. if document_data["data_source"]["type"] == "upload_file":
  330. file_id = document_data["data_source"]["info"]
  331. file = db.session.query(UploadFile).filter(
  332. UploadFile.tenant_id == dataset.tenant_id,
  333. UploadFile.id == file_id
  334. ).first()
  335. # raise error if file not found
  336. if not file:
  337. raise FileNotExistsError()
  338. file_name = file.name
  339. data_source_info = {
  340. "upload_file_id": file_id,
  341. }
  342. # save document
  343. position = DocumentService.get_documents_position(dataset.id)
  344. document = Document(
  345. tenant_id=dataset.tenant_id,
  346. dataset_id=dataset.id,
  347. position=position,
  348. data_source_type=document_data["data_source"]["type"],
  349. data_source_info=json.dumps(data_source_info),
  350. dataset_process_rule_id=dataset_process_rule.id,
  351. batch=time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999)),
  352. name=file_name,
  353. created_from=created_from,
  354. created_by=account.id,
  355. # created_api_request_id = db.Column(UUID, nullable=True)
  356. )
  357. db.session.add(document)
  358. db.session.commit()
  359. # trigger async task
  360. document_indexing_task.delay(document.dataset_id, document.id)
  361. return document
  362. @staticmethod
  363. def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
  364. # save dataset
  365. dataset = Dataset(
  366. tenant_id=tenant_id,
  367. name='',
  368. data_source_type=document_data["data_source"]["type"],
  369. indexing_technique=document_data["indexing_technique"],
  370. created_by=account.id
  371. )
  372. db.session.add(dataset)
  373. db.session.flush()
  374. document = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
  375. cut_length = 18
  376. cut_name = document.name[:cut_length]
  377. dataset.name = cut_name + '...' if len(document.name) > cut_length else cut_name
  378. dataset.description = 'useful for when you want to answer queries about the ' + document.name
  379. db.session.commit()
  380. return dataset, document
  381. @classmethod
  382. def document_create_args_validate(cls, args: dict):
  383. if 'data_source' not in args or not args['data_source']:
  384. raise ValueError("Data source is required")
  385. if not isinstance(args['data_source'], dict):
  386. raise ValueError("Data source is invalid")
  387. if 'type' not in args['data_source'] or not args['data_source']['type']:
  388. raise ValueError("Data source type is required")
  389. if args['data_source']['type'] not in Document.DATA_SOURCES:
  390. raise ValueError("Data source type is invalid")
  391. if args['data_source']['type'] == 'upload_file':
  392. if 'info' not in args['data_source'] or not args['data_source']['info']:
  393. raise ValueError("Data source info is required")
  394. if 'process_rule' not in args or not args['process_rule']:
  395. raise ValueError("Process rule is required")
  396. if not isinstance(args['process_rule'], dict):
  397. raise ValueError("Process rule is invalid")
  398. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  399. raise ValueError("Process rule mode is required")
  400. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  401. raise ValueError("Process rule mode is invalid")
  402. if args['process_rule']['mode'] == 'automatic':
  403. args['process_rule']['rules'] = {}
  404. else:
  405. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  406. raise ValueError("Process rule rules is required")
  407. if not isinstance(args['process_rule']['rules'], dict):
  408. raise ValueError("Process rule rules is invalid")
  409. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  410. or args['process_rule']['rules']['pre_processing_rules'] is None:
  411. raise ValueError("Process rule pre_processing_rules is required")
  412. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  413. raise ValueError("Process rule pre_processing_rules is invalid")
  414. unique_pre_processing_rule_dicts = {}
  415. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  416. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  417. raise ValueError("Process rule pre_processing_rules id is required")
  418. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  419. raise ValueError("Process rule pre_processing_rules id is invalid")
  420. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  421. raise ValueError("Process rule pre_processing_rules enabled is required")
  422. if not isinstance(pre_processing_rule['enabled'], bool):
  423. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  424. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  425. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  426. if 'segmentation' not in args['process_rule']['rules'] \
  427. or args['process_rule']['rules']['segmentation'] is None:
  428. raise ValueError("Process rule segmentation is required")
  429. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  430. raise ValueError("Process rule segmentation is invalid")
  431. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  432. or not args['process_rule']['rules']['segmentation']['separator']:
  433. raise ValueError("Process rule segmentation separator is required")
  434. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  435. raise ValueError("Process rule segmentation separator is invalid")
  436. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  437. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  438. raise ValueError("Process rule segmentation max_tokens is required")
  439. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  440. raise ValueError("Process rule segmentation max_tokens is invalid")