12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- from typing import Any
- from langchain.tools import BaseTool
- from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
- from core.entities.application_entities import DatasetRetrieveConfigEntity, InvokeFrom
- from core.features.dataset_retrieval.dataset_retrieval import DatasetRetrievalFeature
- from core.tools.entities.common_entities import I18nObject
- from core.tools.entities.tool_entities import ToolDescription, ToolIdentity, ToolInvokeMessage, ToolParameter
- from core.tools.tool.tool import Tool
- class DatasetRetrieverTool(Tool):
- langchain_tool: BaseTool
- @staticmethod
- def get_dataset_tools(tenant_id: str,
- dataset_ids: list[str],
- retrieve_config: DatasetRetrieveConfigEntity,
- return_resource: bool,
- invoke_from: InvokeFrom,
- hit_callback: DatasetIndexToolCallbackHandler
- ) -> list['DatasetRetrieverTool']:
- """
- get dataset tool
- """
- # check if retrieve_config is valid
- if dataset_ids is None or len(dataset_ids) == 0:
- return []
- if retrieve_config is None:
- return []
- feature = DatasetRetrievalFeature()
- # save original retrieve strategy, and set retrieve strategy to SINGLE
- # Agent only support SINGLE mode
- original_retriever_mode = retrieve_config.retrieve_strategy
- retrieve_config.retrieve_strategy = DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE
- langchain_tools = feature.to_dataset_retriever_tool(
- tenant_id=tenant_id,
- dataset_ids=dataset_ids,
- retrieve_config=retrieve_config,
- return_resource=return_resource,
- invoke_from=invoke_from,
- hit_callback=hit_callback
- )
- # restore retrieve strategy
- retrieve_config.retrieve_strategy = original_retriever_mode
- # convert langchain tools to Tools
- tools = []
- for langchain_tool in langchain_tools:
- tool = DatasetRetrieverTool(
- langchain_tool=langchain_tool,
- identity=ToolIdentity(author='', name=langchain_tool.name, label=I18nObject(en_US='', zh_Hans='')),
- parameters=[],
- is_team_authorization=True,
- description=ToolDescription(
- human=I18nObject(en_US='', zh_Hans=''),
- llm=langchain_tool.description),
- runtime=DatasetRetrieverTool.Runtime()
- )
- tools.append(tool)
- return tools
- def get_runtime_parameters(self) -> list[ToolParameter]:
- return [
- ToolParameter(name='query',
- label=I18nObject(en_US='', zh_Hans=''),
- human_description=I18nObject(en_US='', zh_Hans=''),
- type=ToolParameter.ToolParameterType.STRING,
- form=ToolParameter.ToolParameterForm.LLM,
- llm_description='Query for the dataset to be used to retrieve the dataset.',
- required=True,
- default=''),
- ]
- def _invoke(self, user_id: str, tool_parameters: dict[str, Any]) -> ToolInvokeMessage | list[ToolInvokeMessage]:
- """
- invoke dataset retriever tool
- """
- query = tool_parameters.get('query', None)
- if not query:
- return self.create_text_message(text='please input query')
- # invoke dataset retriever tool
- result = self.langchain_tool._run(query=query)
- return self.create_text_message(text=result)
- def validate_credentials(self, credentials: dict[str, Any], parameters: dict[str, Any]) -> None:
- """
- validate the credentials for dataset retriever tool
- """
- pass
|