123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172 |
- import logging
- import time
- import click
- from celery import shared_task
- from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
- from core.rag.models.document import Document
- from extensions.ext_database import db
- from models.dataset import Dataset, DocumentSegment
- from models.dataset import Document as DatasetDocument
- @shared_task(queue='dataset')
- def deal_dataset_vector_index_task(dataset_id: str, action: str):
- """
- Async deal dataset from index
- :param dataset_id: dataset_id
- :param action: action
- Usage: deal_dataset_vector_index_task.delay(dataset_id, action)
- """
- logging.info(click.style('Start deal dataset vector index: {}'.format(dataset_id), fg='green'))
- start_at = time.perf_counter()
- try:
- dataset = Dataset.query.filter_by(
- id=dataset_id
- ).first()
- if not dataset:
- raise Exception('Dataset not found')
- index_type = dataset.doc_form
- index_processor = IndexProcessorFactory(index_type).init_index_processor()
- if action == "remove":
- index_processor.clean(dataset, None, with_keywords=False)
- elif action == "add":
- dataset_documents = db.session.query(DatasetDocument).filter(
- DatasetDocument.dataset_id == dataset_id,
- DatasetDocument.indexing_status == 'completed',
- DatasetDocument.enabled == True,
- DatasetDocument.archived == False,
- ).all()
- if dataset_documents:
- documents = []
- for dataset_document in dataset_documents:
- # delete from vector index
- segments = db.session.query(DocumentSegment).filter(
- DocumentSegment.document_id == dataset_document.id,
- DocumentSegment.enabled == True
- ) .order_by(DocumentSegment.position.asc()).all()
- for segment in segments:
- document = Document(
- page_content=segment.content,
- metadata={
- "doc_id": segment.index_node_id,
- "doc_hash": segment.index_node_hash,
- "document_id": segment.document_id,
- "dataset_id": segment.dataset_id,
- }
- )
- documents.append(document)
- # save vector index
- index_processor.load(dataset, documents, with_keywords=False)
- end_at = time.perf_counter()
- logging.info(
- click.style('Deal dataset vector index: {} latency: {}'.format(dataset_id, end_at - start_at), fg='green'))
- except Exception:
- logging.exception("Deal dataset vector index failed")
|