123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- import datetime
- import logging
- import time
- import uuid
- from typing import cast
- import click
- from celery import shared_task
- from sqlalchemy import func
- from core.indexing_runner import IndexingRunner
- from core.model_manager import ModelManager
- from core.model_runtime.entities.model_entities import ModelType
- from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
- from extensions.ext_database import db
- from extensions.ext_redis import redis_client
- from libs import helper
- from models.dataset import Dataset, Document, DocumentSegment
- @shared_task(queue='dataset')
- def batch_create_segment_to_index_task(job_id: str, content: list, dataset_id: str, document_id: str,
- tenant_id: str, user_id: str):
- """
- Async batch create segment to index
- :param job_id:
- :param content:
- :param dataset_id:
- :param document_id:
- :param tenant_id:
- :param user_id:
- Usage: batch_create_segment_to_index_task.delay(segment_id)
- """
- logging.info(click.style('Start batch create segment jobId: {}'.format(job_id), fg='green'))
- start_at = time.perf_counter()
- indexing_cache_key = 'segment_batch_import_{}'.format(job_id)
- try:
- dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
- if not dataset:
- raise ValueError('Dataset not exist.')
- dataset_document = db.session.query(Document).filter(Document.id == document_id).first()
- if not dataset_document:
- raise ValueError('Document not exist.')
- if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != 'completed':
- raise ValueError('Document is not available.')
- document_segments = []
- embedding_model = None
- if dataset.indexing_technique == 'high_quality':
- model_manager = ModelManager()
- embedding_model = model_manager.get_model_instance(
- tenant_id=dataset.tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model
- )
- model_type_instance = embedding_model.model_type_instance
- model_type_instance = cast(TextEmbeddingModel, model_type_instance)
- for segment in content:
- content = segment['content']
- doc_id = str(uuid.uuid4())
- segment_hash = helper.generate_text_hash(content)
- # calc embedding use tokens
- tokens = model_type_instance.get_num_tokens(
- model=embedding_model.model,
- credentials=embedding_model.credentials,
- texts=[content]
- ) if embedding_model else 0
- max_position = db.session.query(func.max(DocumentSegment.position)).filter(
- DocumentSegment.document_id == dataset_document.id
- ).scalar()
- segment_document = DocumentSegment(
- tenant_id=tenant_id,
- dataset_id=dataset_id,
- document_id=document_id,
- index_node_id=doc_id,
- index_node_hash=segment_hash,
- position=max_position + 1 if max_position else 1,
- content=content,
- word_count=len(content),
- tokens=tokens,
- created_by=user_id,
- indexing_at=datetime.datetime.utcnow(),
- status='completed',
- completed_at=datetime.datetime.utcnow()
- )
- if dataset_document.doc_form == 'qa_model':
- segment_document.answer = segment['answer']
- db.session.add(segment_document)
- document_segments.append(segment_document)
- # add index to db
- indexing_runner = IndexingRunner()
- indexing_runner.batch_add_segments(document_segments, dataset)
- db.session.commit()
- redis_client.setex(indexing_cache_key, 600, 'completed')
- end_at = time.perf_counter()
- logging.info(click.style('Segment batch created job: {} latency: {}'.format(job_id, end_at - start_at), fg='green'))
- except Exception as e:
- logging.exception("Segments batch created index failed:{}".format(str(e)))
- redis_client.setex(indexing_cache_key, 600, 'error')
|