batch_create_segment_to_index_task.py 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105
  1. import datetime
  2. import logging
  3. import time
  4. import uuid
  5. from typing import cast
  6. import click
  7. from celery import shared_task
  8. from sqlalchemy import func
  9. from core.indexing_runner import IndexingRunner
  10. from core.model_manager import ModelManager
  11. from core.model_runtime.entities.model_entities import ModelType
  12. from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
  13. from extensions.ext_database import db
  14. from extensions.ext_redis import redis_client
  15. from libs import helper
  16. from models.dataset import Dataset, Document, DocumentSegment
  17. @shared_task(queue='dataset')
  18. def batch_create_segment_to_index_task(job_id: str, content: list, dataset_id: str, document_id: str,
  19. tenant_id: str, user_id: str):
  20. """
  21. Async batch create segment to index
  22. :param job_id:
  23. :param content:
  24. :param dataset_id:
  25. :param document_id:
  26. :param tenant_id:
  27. :param user_id:
  28. Usage: batch_create_segment_to_index_task.delay(segment_id)
  29. """
  30. logging.info(click.style('Start batch create segment jobId: {}'.format(job_id), fg='green'))
  31. start_at = time.perf_counter()
  32. indexing_cache_key = 'segment_batch_import_{}'.format(job_id)
  33. try:
  34. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  35. if not dataset:
  36. raise ValueError('Dataset not exist.')
  37. dataset_document = db.session.query(Document).filter(Document.id == document_id).first()
  38. if not dataset_document:
  39. raise ValueError('Document not exist.')
  40. if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != 'completed':
  41. raise ValueError('Document is not available.')
  42. document_segments = []
  43. embedding_model = None
  44. if dataset.indexing_technique == 'high_quality':
  45. model_manager = ModelManager()
  46. embedding_model = model_manager.get_model_instance(
  47. tenant_id=dataset.tenant_id,
  48. provider=dataset.embedding_model_provider,
  49. model_type=ModelType.TEXT_EMBEDDING,
  50. model=dataset.embedding_model
  51. )
  52. model_type_instance = embedding_model.model_type_instance
  53. model_type_instance = cast(TextEmbeddingModel, model_type_instance)
  54. for segment in content:
  55. content = segment['content']
  56. doc_id = str(uuid.uuid4())
  57. segment_hash = helper.generate_text_hash(content)
  58. # calc embedding use tokens
  59. tokens = model_type_instance.get_num_tokens(
  60. model=embedding_model.model,
  61. credentials=embedding_model.credentials,
  62. texts=[content]
  63. ) if embedding_model else 0
  64. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  65. DocumentSegment.document_id == dataset_document.id
  66. ).scalar()
  67. segment_document = DocumentSegment(
  68. tenant_id=tenant_id,
  69. dataset_id=dataset_id,
  70. document_id=document_id,
  71. index_node_id=doc_id,
  72. index_node_hash=segment_hash,
  73. position=max_position + 1 if max_position else 1,
  74. content=content,
  75. word_count=len(content),
  76. tokens=tokens,
  77. created_by=user_id,
  78. indexing_at=datetime.datetime.utcnow(),
  79. status='completed',
  80. completed_at=datetime.datetime.utcnow()
  81. )
  82. if dataset_document.doc_form == 'qa_model':
  83. segment_document.answer = segment['answer']
  84. db.session.add(segment_document)
  85. document_segments.append(segment_document)
  86. # add index to db
  87. indexing_runner = IndexingRunner()
  88. indexing_runner.batch_add_segments(document_segments, dataset)
  89. db.session.commit()
  90. redis_client.setex(indexing_cache_key, 600, 'completed')
  91. end_at = time.perf_counter()
  92. logging.info(click.style('Segment batch created job: {} latency: {}'.format(job_id, end_at - start_at), fg='green'))
  93. except Exception as e:
  94. logging.exception("Segments batch created index failed:{}".format(str(e)))
  95. redis_client.setex(indexing_cache_key, 600, 'error')