12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- import logging
- import time
- import click
- from celery import shared_task
- from werkzeug.exceptions import NotFound
- from core.rag.datasource.vdb.vector_factory import Vector
- from core.rag.models.document import Document
- from extensions.ext_database import db
- from extensions.ext_redis import redis_client
- from models.dataset import Dataset
- from models.model import App, AppAnnotationSetting, MessageAnnotation
- from services.dataset_service import DatasetCollectionBindingService
- @shared_task(queue='dataset')
- def batch_import_annotations_task(job_id: str, content_list: list[dict], app_id: str, tenant_id: str,
- user_id: str):
- """
- Add annotation to index.
- :param job_id: job_id
- :param content_list: content list
- :param tenant_id: tenant id
- :param app_id: app id
- :param user_id: user_id
- """
- logging.info(click.style('Start batch import annotation: {}'.format(job_id), fg='green'))
- start_at = time.perf_counter()
- indexing_cache_key = 'app_annotation_batch_import_{}'.format(str(job_id))
- # get app info
- app = db.session.query(App).filter(
- App.id == app_id,
- App.tenant_id == tenant_id,
- App.status == 'normal'
- ).first()
- if app:
- try:
- documents = []
- for content in content_list:
- annotation = MessageAnnotation(
- app_id=app.id,
- content=content['answer'],
- question=content['question'],
- account_id=user_id
- )
- db.session.add(annotation)
- db.session.flush()
- document = Document(
- page_content=content['question'],
- metadata={
- "annotation_id": annotation.id,
- "app_id": app_id,
- "doc_id": annotation.id
- }
- )
- documents.append(document)
- # if annotation reply is enabled , batch add annotations' index
- app_annotation_setting = db.session.query(AppAnnotationSetting).filter(
- AppAnnotationSetting.app_id == app_id
- ).first()
- if app_annotation_setting:
- dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type(
- app_annotation_setting.collection_binding_id,
- 'annotation'
- )
- if not dataset_collection_binding:
- raise NotFound("App annotation setting not found")
- dataset = Dataset(
- id=app_id,
- tenant_id=tenant_id,
- indexing_technique='high_quality',
- embedding_model_provider=dataset_collection_binding.provider_name,
- embedding_model=dataset_collection_binding.model_name,
- collection_binding_id=dataset_collection_binding.id
- )
- vector = Vector(dataset, attributes=['doc_id', 'annotation_id', 'app_id'])
- vector.create(documents, duplicate_check=True)
- db.session.commit()
- redis_client.setex(indexing_cache_key, 600, 'completed')
- end_at = time.perf_counter()
- logging.info(
- click.style(
- 'Build index successful for batch import annotation: {} latency: {}'.format(job_id, end_at - start_at),
- fg='green'))
- except Exception as e:
- db.session.rollback()
- redis_client.setex(indexing_cache_key, 600, 'error')
- indexing_error_msg_key = 'app_annotation_batch_import_error_msg_{}'.format(str(job_id))
- redis_client.setex(indexing_error_msg_key, 600, str(e))
- logging.exception("Build index for batch import annotations failed")
|