retrieval_service.py 6.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170
  1. import threading
  2. from typing import Optional
  3. from flask import Flask, current_app
  4. from core.rag.data_post_processor.data_post_processor import DataPostProcessor
  5. from core.rag.datasource.keyword.keyword_factory import Keyword
  6. from core.rag.datasource.vdb.vector_factory import Vector
  7. from extensions.ext_database import db
  8. from models.dataset import Dataset
  9. default_retrieval_model = {
  10. 'search_method': 'semantic_search',
  11. 'reranking_enable': False,
  12. 'reranking_model': {
  13. 'reranking_provider_name': '',
  14. 'reranking_model_name': ''
  15. },
  16. 'top_k': 2,
  17. 'score_threshold_enabled': False
  18. }
  19. class RetrievalService:
  20. @classmethod
  21. def retrieve(cls, retrival_method: str, dataset_id: str, query: str,
  22. top_k: int, score_threshold: Optional[float] = .0, reranking_model: Optional[dict] = None):
  23. dataset = db.session.query(Dataset).filter(
  24. Dataset.id == dataset_id
  25. ).first()
  26. if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:
  27. return []
  28. all_documents = []
  29. threads = []
  30. # retrieval_model source with keyword
  31. if retrival_method == 'keyword_search':
  32. keyword_thread = threading.Thread(target=RetrievalService.keyword_search, kwargs={
  33. 'flask_app': current_app._get_current_object(),
  34. 'dataset_id': dataset_id,
  35. 'query': query,
  36. 'top_k': top_k,
  37. 'all_documents': all_documents
  38. })
  39. threads.append(keyword_thread)
  40. keyword_thread.start()
  41. # retrieval_model source with semantic
  42. if retrival_method == 'semantic_search' or retrival_method == 'hybrid_search':
  43. embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
  44. 'flask_app': current_app._get_current_object(),
  45. 'dataset_id': dataset_id,
  46. 'query': query,
  47. 'top_k': top_k,
  48. 'score_threshold': score_threshold,
  49. 'reranking_model': reranking_model,
  50. 'all_documents': all_documents,
  51. 'retrival_method': retrival_method
  52. })
  53. threads.append(embedding_thread)
  54. embedding_thread.start()
  55. # retrieval source with full text
  56. if retrival_method == 'full_text_search' or retrival_method == 'hybrid_search':
  57. full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
  58. 'flask_app': current_app._get_current_object(),
  59. 'dataset_id': dataset_id,
  60. 'query': query,
  61. 'retrival_method': retrival_method,
  62. 'score_threshold': score_threshold,
  63. 'top_k': top_k,
  64. 'reranking_model': reranking_model,
  65. 'all_documents': all_documents
  66. })
  67. threads.append(full_text_index_thread)
  68. full_text_index_thread.start()
  69. for thread in threads:
  70. thread.join()
  71. if retrival_method == 'hybrid_search':
  72. data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
  73. all_documents = data_post_processor.invoke(
  74. query=query,
  75. documents=all_documents,
  76. score_threshold=score_threshold,
  77. top_n=top_k
  78. )
  79. return all_documents
  80. @classmethod
  81. def keyword_search(cls, flask_app: Flask, dataset_id: str, query: str,
  82. top_k: int, all_documents: list):
  83. with flask_app.app_context():
  84. dataset = db.session.query(Dataset).filter(
  85. Dataset.id == dataset_id
  86. ).first()
  87. keyword = Keyword(
  88. dataset=dataset
  89. )
  90. documents = keyword.search(
  91. query,
  92. top_k=top_k
  93. )
  94. all_documents.extend(documents)
  95. @classmethod
  96. def embedding_search(cls, flask_app: Flask, dataset_id: str, query: str,
  97. top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
  98. all_documents: list, retrival_method: str):
  99. with flask_app.app_context():
  100. dataset = db.session.query(Dataset).filter(
  101. Dataset.id == dataset_id
  102. ).first()
  103. vector = Vector(
  104. dataset=dataset
  105. )
  106. documents = vector.search_by_vector(
  107. query,
  108. search_type='similarity_score_threshold',
  109. top_k=top_k,
  110. score_threshold=score_threshold,
  111. filter={
  112. 'group_id': [dataset.id]
  113. }
  114. )
  115. if documents:
  116. if reranking_model and retrival_method == 'semantic_search':
  117. data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
  118. all_documents.extend(data_post_processor.invoke(
  119. query=query,
  120. documents=documents,
  121. score_threshold=score_threshold,
  122. top_n=len(documents)
  123. ))
  124. else:
  125. all_documents.extend(documents)
  126. @classmethod
  127. def full_text_index_search(cls, flask_app: Flask, dataset_id: str, query: str,
  128. top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
  129. all_documents: list, retrival_method: str):
  130. with flask_app.app_context():
  131. dataset = db.session.query(Dataset).filter(
  132. Dataset.id == dataset_id
  133. ).first()
  134. vector_processor = Vector(
  135. dataset=dataset,
  136. )
  137. documents = vector_processor.search_by_full_text(
  138. query,
  139. top_k=top_k
  140. )
  141. if documents:
  142. if reranking_model and retrival_method == 'full_text_search':
  143. data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
  144. all_documents.extend(data_post_processor.invoke(
  145. query=query,
  146. documents=documents,
  147. score_threshold=score_threshold,
  148. top_n=len(documents)
  149. ))
  150. else:
  151. all_documents.extend(documents)