123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391 |
- import time
- from collections.abc import Generator
- from typing import Optional, Union, cast
- from core.application_queue_manager import ApplicationQueueManager, PublishFrom
- from core.entities.application_entities import (
- ApplicationGenerateEntity,
- AppOrchestrationConfigEntity,
- ExternalDataVariableEntity,
- InvokeFrom,
- ModelConfigEntity,
- PromptTemplateEntity,
- )
- from core.features.annotation_reply import AnnotationReplyFeature
- from core.features.external_data_fetch import ExternalDataFetchFeature
- from core.features.hosting_moderation import HostingModerationFeature
- from core.features.moderation import ModerationFeature
- from core.file.file_obj import FileObj
- from core.memory.token_buffer_memory import TokenBufferMemory
- from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
- from core.model_runtime.entities.message_entities import AssistantPromptMessage, PromptMessage
- from core.model_runtime.entities.model_entities import ModelPropertyKey
- from core.model_runtime.errors.invoke import InvokeBadRequestError
- from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
- from core.prompt.prompt_transform import PromptTransform
- from models.model import App, Message, MessageAnnotation
- class AppRunner:
- def get_pre_calculate_rest_tokens(self, app_record: App,
- model_config: ModelConfigEntity,
- prompt_template_entity: PromptTemplateEntity,
- inputs: dict[str, str],
- files: list[FileObj],
- query: Optional[str] = None) -> int:
- """
- Get pre calculate rest tokens
- :param app_record: app record
- :param model_config: model config entity
- :param prompt_template_entity: prompt template entity
- :param inputs: inputs
- :param files: files
- :param query: query
- :return:
- """
- model_type_instance = model_config.provider_model_bundle.model_type_instance
- model_type_instance = cast(LargeLanguageModel, model_type_instance)
- model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
- max_tokens = 0
- for parameter_rule in model_config.model_schema.parameter_rules:
- if (parameter_rule.name == 'max_tokens'
- or (parameter_rule.use_template and parameter_rule.use_template == 'max_tokens')):
- max_tokens = (model_config.parameters.get(parameter_rule.name)
- or model_config.parameters.get(parameter_rule.use_template)) or 0
- if model_context_tokens is None:
- return -1
- if max_tokens is None:
- max_tokens = 0
- # get prompt messages without memory and context
- prompt_messages, stop = self.organize_prompt_messages(
- app_record=app_record,
- model_config=model_config,
- prompt_template_entity=prompt_template_entity,
- inputs=inputs,
- files=files,
- query=query
- )
- prompt_tokens = model_type_instance.get_num_tokens(
- model_config.model,
- model_config.credentials,
- prompt_messages
- )
- rest_tokens = model_context_tokens - max_tokens - prompt_tokens
- if rest_tokens < 0:
- raise InvokeBadRequestError("Query or prefix prompt is too long, you can reduce the prefix prompt, "
- "or shrink the max token, or switch to a llm with a larger token limit size.")
- return rest_tokens
- def recalc_llm_max_tokens(self, model_config: ModelConfigEntity,
- prompt_messages: list[PromptMessage]):
- # recalc max_tokens if sum(prompt_token + max_tokens) over model token limit
- model_type_instance = model_config.provider_model_bundle.model_type_instance
- model_type_instance = cast(LargeLanguageModel, model_type_instance)
- model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
- max_tokens = 0
- for parameter_rule in model_config.model_schema.parameter_rules:
- if (parameter_rule.name == 'max_tokens'
- or (parameter_rule.use_template and parameter_rule.use_template == 'max_tokens')):
- max_tokens = (model_config.parameters.get(parameter_rule.name)
- or model_config.parameters.get(parameter_rule.use_template)) or 0
- if model_context_tokens is None:
- return -1
- if max_tokens is None:
- max_tokens = 0
- prompt_tokens = model_type_instance.get_num_tokens(
- model_config.model,
- model_config.credentials,
- prompt_messages
- )
- if prompt_tokens + max_tokens > model_context_tokens:
- max_tokens = max(model_context_tokens - prompt_tokens, 16)
- for parameter_rule in model_config.model_schema.parameter_rules:
- if (parameter_rule.name == 'max_tokens'
- or (parameter_rule.use_template and parameter_rule.use_template == 'max_tokens')):
- model_config.parameters[parameter_rule.name] = max_tokens
- def organize_prompt_messages(self, app_record: App,
- model_config: ModelConfigEntity,
- prompt_template_entity: PromptTemplateEntity,
- inputs: dict[str, str],
- files: list[FileObj],
- query: Optional[str] = None,
- context: Optional[str] = None,
- memory: Optional[TokenBufferMemory] = None) \
- -> tuple[list[PromptMessage], Optional[list[str]]]:
- """
- Organize prompt messages
- :param context:
- :param app_record: app record
- :param model_config: model config entity
- :param prompt_template_entity: prompt template entity
- :param inputs: inputs
- :param files: files
- :param query: query
- :param memory: memory
- :return:
- """
- prompt_transform = PromptTransform()
- # get prompt without memory and context
- if prompt_template_entity.prompt_type == PromptTemplateEntity.PromptType.SIMPLE:
- prompt_messages, stop = prompt_transform.get_prompt(
- app_mode=app_record.mode,
- prompt_template_entity=prompt_template_entity,
- inputs=inputs,
- query=query if query else '',
- files=files,
- context=context,
- memory=memory,
- model_config=model_config
- )
- else:
- prompt_messages = prompt_transform.get_advanced_prompt(
- app_mode=app_record.mode,
- prompt_template_entity=prompt_template_entity,
- inputs=inputs,
- query=query,
- files=files,
- context=context,
- memory=memory,
- model_config=model_config
- )
- stop = model_config.stop
- return prompt_messages, stop
- def direct_output(self, queue_manager: ApplicationQueueManager,
- app_orchestration_config: AppOrchestrationConfigEntity,
- prompt_messages: list,
- text: str,
- stream: bool,
- usage: Optional[LLMUsage] = None) -> None:
- """
- Direct output
- :param queue_manager: application queue manager
- :param app_orchestration_config: app orchestration config
- :param prompt_messages: prompt messages
- :param text: text
- :param stream: stream
- :param usage: usage
- :return:
- """
- if stream:
- index = 0
- for token in text:
- queue_manager.publish_chunk_message(LLMResultChunk(
- model=app_orchestration_config.model_config.model,
- prompt_messages=prompt_messages,
- delta=LLMResultChunkDelta(
- index=index,
- message=AssistantPromptMessage(content=token)
- )
- ), PublishFrom.APPLICATION_MANAGER)
- index += 1
- time.sleep(0.01)
- queue_manager.publish_message_end(
- llm_result=LLMResult(
- model=app_orchestration_config.model_config.model,
- prompt_messages=prompt_messages,
- message=AssistantPromptMessage(content=text),
- usage=usage if usage else LLMUsage.empty_usage()
- ),
- pub_from=PublishFrom.APPLICATION_MANAGER
- )
- def _handle_invoke_result(self, invoke_result: Union[LLMResult, Generator],
- queue_manager: ApplicationQueueManager,
- stream: bool,
- agent: bool = False) -> None:
- """
- Handle invoke result
- :param invoke_result: invoke result
- :param queue_manager: application queue manager
- :param stream: stream
- :return:
- """
- if not stream:
- self._handle_invoke_result_direct(
- invoke_result=invoke_result,
- queue_manager=queue_manager,
- agent=agent
- )
- else:
- self._handle_invoke_result_stream(
- invoke_result=invoke_result,
- queue_manager=queue_manager,
- agent=agent
- )
- def _handle_invoke_result_direct(self, invoke_result: LLMResult,
- queue_manager: ApplicationQueueManager,
- agent: bool) -> None:
- """
- Handle invoke result direct
- :param invoke_result: invoke result
- :param queue_manager: application queue manager
- :return:
- """
- queue_manager.publish_message_end(
- llm_result=invoke_result,
- pub_from=PublishFrom.APPLICATION_MANAGER
- )
- def _handle_invoke_result_stream(self, invoke_result: Generator,
- queue_manager: ApplicationQueueManager,
- agent: bool) -> None:
- """
- Handle invoke result
- :param invoke_result: invoke result
- :param queue_manager: application queue manager
- :return:
- """
- model = None
- prompt_messages = []
- text = ''
- usage = None
- for result in invoke_result:
- if not agent:
- queue_manager.publish_chunk_message(result, PublishFrom.APPLICATION_MANAGER)
- else:
- queue_manager.publish_agent_chunk_message(result, PublishFrom.APPLICATION_MANAGER)
- text += result.delta.message.content
- if not model:
- model = result.model
- if not prompt_messages:
- prompt_messages = result.prompt_messages
- if not usage and result.delta.usage:
- usage = result.delta.usage
- if not usage:
- usage = LLMUsage.empty_usage()
- llm_result = LLMResult(
- model=model,
- prompt_messages=prompt_messages,
- message=AssistantPromptMessage(content=text),
- usage=usage
- )
- queue_manager.publish_message_end(
- llm_result=llm_result,
- pub_from=PublishFrom.APPLICATION_MANAGER
- )
- def moderation_for_inputs(self, app_id: str,
- tenant_id: str,
- app_orchestration_config_entity: AppOrchestrationConfigEntity,
- inputs: dict,
- query: str) -> tuple[bool, dict, str]:
- """
- Process sensitive_word_avoidance.
- :param app_id: app id
- :param tenant_id: tenant id
- :param app_orchestration_config_entity: app orchestration config entity
- :param inputs: inputs
- :param query: query
- :return:
- """
- moderation_feature = ModerationFeature()
- return moderation_feature.check(
- app_id=app_id,
- tenant_id=tenant_id,
- app_orchestration_config_entity=app_orchestration_config_entity,
- inputs=inputs,
- query=query,
- )
-
- def check_hosting_moderation(self, application_generate_entity: ApplicationGenerateEntity,
- queue_manager: ApplicationQueueManager,
- prompt_messages: list[PromptMessage]) -> bool:
- """
- Check hosting moderation
- :param application_generate_entity: application generate entity
- :param queue_manager: queue manager
- :param prompt_messages: prompt messages
- :return:
- """
- hosting_moderation_feature = HostingModerationFeature()
- moderation_result = hosting_moderation_feature.check(
- application_generate_entity=application_generate_entity,
- prompt_messages=prompt_messages
- )
- if moderation_result:
- self.direct_output(
- queue_manager=queue_manager,
- app_orchestration_config=application_generate_entity.app_orchestration_config_entity,
- prompt_messages=prompt_messages,
- text="I apologize for any confusion, " \
- "but I'm an AI assistant to be helpful, harmless, and honest.",
- stream=application_generate_entity.stream
- )
- return moderation_result
- def fill_in_inputs_from_external_data_tools(self, tenant_id: str,
- app_id: str,
- external_data_tools: list[ExternalDataVariableEntity],
- inputs: dict,
- query: str) -> dict:
- """
- Fill in variable inputs from external data tools if exists.
- :param tenant_id: workspace id
- :param app_id: app id
- :param external_data_tools: external data tools configs
- :param inputs: the inputs
- :param query: the query
- :return: the filled inputs
- """
- external_data_fetch_feature = ExternalDataFetchFeature()
- return external_data_fetch_feature.fetch(
- tenant_id=tenant_id,
- app_id=app_id,
- external_data_tools=external_data_tools,
- inputs=inputs,
- query=query
- )
-
- def query_app_annotations_to_reply(self, app_record: App,
- message: Message,
- query: str,
- user_id: str,
- invoke_from: InvokeFrom) -> Optional[MessageAnnotation]:
- """
- Query app annotations to reply
- :param app_record: app record
- :param message: message
- :param query: query
- :param user_id: user id
- :param invoke_from: invoke from
- :return:
- """
- annotation_reply_feature = AnnotationReplyFeature()
- return annotation_reply_feature.query(
- app_record=app_record,
- message=message,
- query=query,
- user_id=user_id,
- invoke_from=invoke_from
- )
|